Skip to main content
Log in

Nonparametric local linear regression estimation for censored data and functional regressors

  • Review Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

In this work, we introduce a local linear nonparametric estimation of the regression function of a censored scalar response random variable, given a functional random covariate. Under standard conditions, we establish the pointwise and the uniform almost-complete convergences, with rates, of the proposed estimator. Then, we carry out a simulation study and a real data analysis in order to compare the performances of our methodology with those of the kernel method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ait Hennania, L., Lemdania, M., & Ould Said, E. (2018). Robust regression analysis for a censored response and functional regressors. Journal of Nonparametric Statistics,. https://doi.org/10.1080/10485252.2018.1546386.

    Article  Google Scholar 

  • Barrientos-Marin, J. Ferraty, Vieu, F., & Vieu, P. (2010). Locally modelled regression and functional data. Journal of Nonparametric Statistics, 22(5), 617–632.

    Article  MathSciNet  Google Scholar 

  • Benhenni, K., Ferraty, F., Rachdi, M., & Vieu, P. (2007). Local smoothing regression with functional data. Computational Statistics, 22(3), 353–369.

    Article  MathSciNet  Google Scholar 

  • Bitouzé, D., Laurent, B., & Massart, P. (1999). A dvoretzky-kiefer-wolfowitz type inequality for the Kaplan–Meier estimator. Annales de l’Institut Henri Poincaré (B) Probabilités et Statistiques, 35, 735–763.

    Article  MathSciNet  Google Scholar 

  • Bouchentouf, A., Hamza, A., & Rabhi, A. (2017). Strong uniform consistency rates of conditional hazard estimation in the single functional index model for dependant functional data under random censorship. International Journal of Statistics and Economics, 18, 82–101.

    Google Scholar 

  • Chaouch, M., & Khardani, S. (2014). Randomly censored quantile regression estimation using functional stationary ergodic data. Journal of Nonparametric Statistics,. https://doi.org/10.1080/10485252.2014.982651.

    Article  MATH  Google Scholar 

  • Demongeot, J., Laksaci, A., Madani, F., & Rachdi, M. (2013). Functional data: local linear estimation of the conditional density and its application. Statistics, 47(1), 26–44.

    Article  MathSciNet  Google Scholar 

  • El Ghouch, A., & Van Keilegom, I. (2009). Local linear quantile regression with dependent censored data. Statistica Sinica, 19, 1621–1640.

    MathSciNet  MATH  Google Scholar 

  • Ferraty, F., Van Keilegom, I., & Vieu, P. (2008). On the validity of the bootstrap in nonpara-metric functional regression. Scandinavian Journal of Statistics, 37(2), 286–306.

    Article  Google Scholar 

  • Ferraty, F., Laksaci, A., Tadj, A., & Vieu, P. (2010). Rate of uniform consistency for nonparametric estimates with functional variables. Journal of Statistical Planning and Inference, 140, 335–352.

    Article  MathSciNet  Google Scholar 

  • Ferraty, F., & Vieu, P. (2006). Nonparametric functional data analysis. Theory and practice. Springer series in statistics. New York: Springer.

    MATH  Google Scholar 

  • Guessoum, Z., & Ould Said, E. (2008). On nonparametric estimation of the regression function under random censorship model. Statistics & Decisions, 26, 159–177.

    Article  MathSciNet  Google Scholar 

  • Horrigue, W., & Ould Said, E. (2011). Strong uniform consistency of a nonparametric estimator of a conditional quantile for censored dependent data and functional regressors conditional quantile for functionnal times series. Random operators and stochastic equations (pp. 131–156). Basel: Birkhusser Verlag.

    MATH  Google Scholar 

  • Horrigue, W., & Ould Said, E. (2015). Nonparametric regression quantile estimation for dependent functional data under random censorship: Asymptotic normality. Communications in Statistics-Theory and Methods, 44, 4307–4332.

    Article  MathSciNet  Google Scholar 

  • Kadiri, N., Rabhi, A., & Bouchentouf, A. A. (2018). Strong uniform consistency rates of conditional quantile estimation in the single functional index model under random censorship. Dependent Modeling, 16, 197–227.

    Article  MathSciNet  Google Scholar 

  • Kaplan, E. M., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53, 457–481.

    Article  MathSciNet  Google Scholar 

  • Kolmogorov, A. N., & Tikhomirov, V. M. (1959). \(\varepsilon\) entropy and \(\varepsilon\) capacity. Uspekhi Matematicheskikh Nauk, 14, 3–86. (Engl Transl American Mathematical Society Translations. Ser 2 (1961) 277–364).

    MATH  Google Scholar 

  • Leulmi, S. (2020). Local linear estimation of the conditional quantile for censored data and functional regressors. Communications in Statistics-Theory and Methods,. https://doi.org/10.1080/03610926.2019.1692033.

    Article  MathSciNet  Google Scholar 

  • Leulmi, S., & Messaci, F. (2018). Local linear estimation of a generalized regression function with functional dependent data. Communications in Statistics-Theory and Methods, 47(23), 5795–5811.

    Article  MathSciNet  Google Scholar 

  • Leulmi, S., & Messaci, F. (2019). A class of local linear estimators with functional data. Journal of Siberian Federal University, 12, 379–391.

    Article  MathSciNet  Google Scholar 

  • Ling, N., & Liu, Y. (2016). The kernel regression estimation for randomly censored functional stationary ergodic data. Communications in Statistics-Theory and Methods,. https://doi.org/10.1080/03610926.2016.1185117.

    Article  Google Scholar 

  • Mechab, B., Hamidi, N., & Benaissa, S. (2019). Nonparametric estimation of the relative error in functional regression and censored data. Chilean Journal of Statistics, 10(2), 177–195.

    MathSciNet  MATH  Google Scholar 

  • Messaci, F., Nemouchi, N., Ouassou, I., & Rachdi, M. (2015). Local polynomial modelling of the conditional quantile for functional data. Statistical Methods & Applications, 24(4), 597–622.

    Article  MathSciNet  Google Scholar 

  • Ould Said, E. (2006). A strong uniform convergence rate of kernel conditional quantile estimator under random censorship. Statistics & Probability Letters, 76, 579–586.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is very pleased to thank the editor and the reviewers for their helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leulmi Sara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In what follows, let C be some strictly positive generic constant and for any \(x\in {\mathcal F}\), and for all \(i=1,\ldots ,n\):

$$\begin{aligned} K_i(x):=K(h^{-1} d(X_i, x)) \;\; \text{ and }\;\;\beta _i(x):=\beta (X_i,x). \end{aligned}$$
  1. 1

    To treat the pointwise almost-complete convergence of \(\widehat{m}(x)\) we need Lemma A.1 introduced in Barrientos-Marin et al. (2010)

Proof of Lemma 2

As \((X_i,Z_i,\delta _i)\) are i.i.d., we get

$$\begin{aligned} E \widetilde{m}_{1}(x)-{m}(x)=\frac{1}{E[W_{12}(x)]} E \left\{ W_{12}(x) \left[ E \left( Z_2 S^{-1}(Z_{2}) \delta _2| X_2\right) -{m}(x) \right] \right\} . \end{aligned}$$

Hypothesis (H4), combining with the fact that \(E(\delta _2|X_{2},Y_2)=S(Y_{2})\), give that

$$\begin{aligned} E \left[ Z_2 S^{-1}(Z_{2}) \delta _2| X_2\right] =E \left[ Y_2 S^{-1}(Y_{2}) E\left( \delta _2 |X_{2},Y_2 \right) | X_2\right] =m(X_2). \end{aligned}$$

Then, we get

$$\begin{aligned} E \widetilde{m}_{1}(x)-{m}(x)=\frac{1}{E[W_{12}(x)]} E \left[ W_{12}(x) \left( m(X_2)-{m}(x) \right) \right] . \end{aligned}$$
(9)

The claimed result is obtained by using the last relation and the condition (H2). \(\square\)

Proof of Lemma 3

We need to show that

$$\begin{aligned} \sum _{n}{P}\left( |\widetilde{m}_{1}(x)-E(\widetilde{m}_{1}(x)|>\epsilon \sqrt{\frac{\ln n}{n\varPhi _{x}(h)}}\;\right) <\infty . \end{aligned}$$

By following the same decomposition idea as in the proof of Lemma 4.4 in Barrientos-Marin et al. (2010), we can write

$$\begin{aligned} \widetilde{m}_{1}(x)= & {} \frac{1}{n(n-1) E\left[ W_{12}(x)\right] }\sum _{{i,j=1}}^n W_{ij}(x) \delta _j Z_j S^{-1}(Z_j) \nonumber \\= & {} \frac{n^2h^{2}\varPhi _{x}^{2}(h)}{n(n-1) E \left[ W_{12}(x)\right] } \Big[ \left( \frac{1}{n\varPhi _{x}(h)}\sum _{j=1}^n K_{j}(x) Z_j \delta _j S^{-1}(Z_j) \right) \left( \frac{1}{n\varPhi _{x}(h)}\sum _{j=1}^n \frac{K_{j}(x)\beta ^{2}_j(x)}{h^{2}}\right) \nonumber \\&- \left( \frac{1}{n\varPhi _{x}(h)}\sum _{j=1}^n \frac{K_{j}(x)\beta _j(x) Z_j \delta _j S^{-1}(Z_j)}{h} \right) \left( \frac{1}{n\varPhi _{x}(h)}\sum _{j=1}^n \frac{K_{j}(x)\beta _j(x) }{h} \right) \Big] \nonumber \\= & {} Q(x)[M_{2,1}(x)M_{4,0}(x)-M_{3,1}(x)M_{3,0}(x)], \end{aligned}$$
(10)

where, for \(p \in \{2,3,4\}\) and \(l \in \{0,1\}\),

$$\begin{aligned} M_{p,l}(x)=\frac{1}{n\varPhi _{x}(h)}\sum _{j=1}^n \frac{K_{j}(x)\beta ^{p-2}_j(x) Z_j^l \delta _j^l S^{-l}(Z_j)}{h^{p-2}} \; \; and \;\; Q(x)=\frac{n^2h^{2}\varPhi _{x}^{2}(h)}{n(n-1) E \left[ W_{12}(x)\right] }. \end{aligned}$$

So, we have

$$\begin{aligned} \widetilde{m}_{1}(x)-E\widetilde{m}_{1}(x)=Q(x)\left\{ \left[ M_{2,1}(x)M_{4,0}(x)-E(M_{2,1}(x)M_{4,0}(x))\right] -\left[ M_{3,1}(x)M_{3,0}(x)-E(M_{3,1}(x)M_{3,0}(x))\right] \right\} . \end{aligned}$$

Notice that, \(Q(x)=O(1)\) [see the proof of Lemma 4.4 in Barrientos-Marin et al. (2010)], so, we have to show that, for \(p \in \{2,3,4\}\) and \(l \in \{0,1\}\)

$$\begin{aligned} \sum _{n}{P}\left( |M_{p,l}(x)-E(M_{p,l}(x))|>\epsilon \sqrt{\frac{\ln n}{n\varPhi _{x}(h)}}\right) <\infty , \;\;\; E[M_{p,l}(x)]=O(1), \end{aligned}$$

and that almost-surely

$$\begin{aligned} E(M_{2,1}(x))E(M_{4,0}(x))-E(M_{2,1}(x)M_{4,0}(x))=O\left( \sqrt{\frac{\ln n}{n\varPhi _{x}(h)}}\right) \end{aligned}$$

and

$$\begin{aligned} E(M_{3,1}(x))E(M_{3,0}(x))-E(M_{3,1}(x)M_{3,0}(x))=O\left( \sqrt{\frac{\ln n}{n\varPhi _{x}(h)}}\right) . \end{aligned}$$
  • Firstly we have

    $$\begin{aligned} M_{p,l}(x)-E(M_{p,l}(x))= & {} \frac{1}{nh^{p-2}\varPhi _{x}(h)} \sum _{i=1}^{n}\left[ K_{i}(x)\beta ^{p-2}_i(x) Z_i^l \delta _i^l S^{-l}(Z_i)-E \left( K_{i}(x)\beta ^{p-2}_i(x) Z_i^l \delta _i^l S^{-l}(Z_i)\right) \right] \\= & {} \frac{1}{n} \sum _{i=1}^{n}\frac{1}{h^{p-2}\varPhi _{x}(h)} \left[ K_{i}(x)\beta ^{p-2}_i(x) Z_i^l \delta _i^l S^{-l}(Z_i)-E \left( K_{i}(x)\beta ^{p-2}_i(x) Z_i^l \delta _i^l S^{-l}(Z_i)\right) \right] \\:= & {} \frac{1}{n}\sum _{i=1}^{n} \eta _i^{(p,l)}(x), \end{aligned}$$

    where

    $$\begin{aligned} \eta ^{(p,l)}_{i}(x) :=\frac{1}{h^{p-2}\varPhi _{x}(h)} \left[ K_{i}(x)\beta ^{p-2}_i(x) Z_i^l \delta _i^l S^{-l}(Z_i)-E \left( K_{i}(x)\beta ^{p-2}_i(x) Z_i^l \delta _i^l S^{-l}(Z_i)\right) \right] . \end{aligned}$$
    (11)

    In order to apply an exponential inequality, we focus on the absolute moments of the r.r.v. \(\eta ^{(p,l)}_{i}(x)\). By Lemma A.1(i) in Barrientos-Marin et al. (2010), we can write

    $$\begin{aligned} E \vert \eta ^{(p,l)}_{i}(x) \vert ^m = O \left( [\varPhi _{x}(h)]^{-m+1} \right) . \end{aligned}$$

    Finally, it suffices to apply Corollary A.8-(ii) in Ferraty and Vieu (2006) with \(a^2_n =[\varPhi _{x}(h)]^{-1}\) to get, for \(p \in \{2,3,4\}\) and \(l \in \{0,1\}\)

    $$\begin{aligned} M_{p,l}(x)-E M_{p,l}(x)=O_{a.co.}\left( \sqrt{\frac{\ln n}{n\varPhi _{x}(h)}} \; \right) . \end{aligned}$$
    (12)
  • It is easy to see that under (H1), (H3), (H4) and (A1), we get, for \(p \in \{2,3,4\}\) and \(l \in \{0,1\}\),

    $$\begin{aligned} E[M_{p,l}(x)]=h^{2-p}\varPhi _{x}(h)^{-1} E\left[ K_{1}(x)\beta ^{p-2}_1(x) Z_1^l \delta _1^l S^{-l}(Z_1)\right] \le C, \end{aligned}$$
    (13)

    the last inequality is obtained by using the Lemma A.1(i) in Barrientos-Marin et al. (2010).

  • Treatment of the term \(E(M_{2,1}(x))E(M_{4,0}(x))-E(M_{2,1}(x)M_{4,0}(x))\)

    We can write

    $$\begin{aligned} E(M_{2,1}(x))E(M_{4,0}(x))-E(M_{2,1}(x)M_{4,0}(x)) = \frac{1}{nh^{2} \varPhi _{x}(h)^{2}} E[ K_1(x) \beta _1^{2}(x)] E[ K_1(x) m(X_1)] +O\left( (n \varPhi _{x}(h))^{-1} \right) . \end{aligned}$$

    By using Lemma A.1(i) in Barrientos-Marin et al. (2010), it is easy to see that

    $$\begin{aligned} E(M_{2,1}(x))E(M_{4,0}(x))-E(M_{2,1}(x)M_{4,0}(x))=O\left( (n \varPhi _{x}(h))^{-1} \right) , \end{aligned}$$
    (14)

    which is negligible with respect to \(O\left( \sqrt{\frac{\ln n}{n\varPhi _{x}(h)}} \; \right)\), under (H5).

  • By similar arguments, one can state

    $$\begin{aligned} E(M_{3,1}(x))E(M_{3,0}(x))-E(M_{3,1}(x)M_{3,0}(x))=O\left( \sqrt{\frac{\ln n}{n\varPhi _{x}(h)}} \; \right) . \end{aligned}$$
    (15)

\(\square\)

Proof of Lemma 5

Because the assumption (A1) and the definitions of \(\widehat{m}_{1}(x)\) and \(\widetilde{m}_{1}(x)\) in (6) and (7), we can write

$$\begin{aligned} \left| \widehat{m}_{1}(x)-\widetilde{m}_{1}(x)\right| \nonumber= & {} \left| \frac{1}{n(n-1) E\left[ W_{12}(x)\right] } \sum _{i\not =j}W_{ij}(x)\delta _j Z_j\left( \frac{1}{S_n(Z_j)} - \frac{1}{S(Z_j)} \right) \right| \nonumber \\\le & {} \frac{ \vert T \vert \sup \limits _{t \le T} \vert S_n(t)-S(t)\vert }{S_n (T)S(T)} \left| \frac{1}{n(n-1) E\left[ W_{12}(x)\right] } \sum _{i\not =j}W_{ij}(x)\right| \nonumber \\\le & {} \frac{ \vert T \vert \sup \limits _{t \le T} \vert S_n(t)-S(t)\vert }{S_n (T)S(T)} \vert \widehat{m}_0(x) \vert , \end{aligned}$$
(16)

where \(\widehat{m}_0(x)\) is defined in (6).

In order hands, by adapt Theorem 1 of Bitouzé et al. (1999), we get

$$\begin{aligned} \sup \limits _{t \le T} \vert S_n(t)-S(t)\vert =O_{a.co.}\left( \sqrt{\frac{\ln n}{n}} \; \right) , \end{aligned}$$
(17)

which is equals to \(O_{a.co.}\left( \sqrt{\frac{\ln n}{n\varPhi _x(h)}}\right)\). The proof is completed by using Lemma 4. \(\square\)

  1. 2.

    To treat the uniform convergence of \(\widehat{m}(x)\) we need to Lemma 4.1 introduced in Messaci et al. (2015)

Proof of Lemma 7

It is a direct proof, by combining Eq. (9) and hypothesis (U2). \(\square\)

Proof of Lemma 8

We use again the decomposition (10) and by following the same steps as in (13), (14) and (15), with using Lemma 4.1 in Messaci et al. (2015) instead of lemma A.1 in Barrientos-Marin et al. (2010), we obtain under the assumptions (U1), (U3), (U4), (U6) and (A1), for \(p=2,3,4\) and \(l=0,1\),

$$\begin{aligned}&\sup _{x\in S_{\mathcal F}}E(M_{p,l}(x))=O(1),\;\;\sup _{x\in S_{\mathcal F}}Q(x)=O(1),\nonumber \\&\quad \sup _{x\in S_{\mathcal F}}| E(M_{2,1}(x)) E(M_{4,0}(x))-E(M_{2,1}(x)M_{4,0}(x))|=O\left( \frac{1}{n\varPhi (h)}\right) , \end{aligned}$$
(18)

and

$$\begin{aligned} \sup _{x\in S_{\mathcal F}}| E(M_{3,1}(x)) E(M_{3,0}(x))-E(M_{3,1}(x)M_{3,0}(x))|=O\left( \frac{1}{n\varPhi (h)}\right) , \end{aligned}$$

which is, in view of hypothesis (U5), equals to \(O\left( \sqrt{\frac{\ln d_n}{n\varPhi (h)}}\right)\).

So, we need to check that for \(p=2,3,4\) and \(l=0,1\),

$$\begin{aligned} \sup _{x\in S_{\mathcal F}}\left| M_{p,l}(x) - E(M_{p,l}(x))\right| =O_{a.co.}\left( \sqrt{\frac{\ln d_n}{n\varPhi (h)}}\right) . \end{aligned}$$

Now, we consider the following decomposition

$$\begin{aligned} \sup _{x\in S_{\mathcal {F}}}\left| M_{p,l}(x)-E(M_{p,l}(x)) \right|\le & {} \sup _{x\in S_{\mathcal {F}}}\left| M_{p,l}(x)-M_{p,l}(x_{j(x)}) \right| \\&+\sup _{x\in S_{\mathcal {F}}}\left| E(M_{p,l}(x_{j(x)}))-E(M_{p,l}(x_{j(x)})) \right| \\&+\sup _{x\in S_{\mathcal {F}}}\left| E(M_{p,l}(x_{j(x)}))- E(M_{p,l}(x)) \right| \\:= & {} \sum _{i=1}^{3}F_{i}^{p,l}. \end{aligned}$$

Study of the terms \(F_1^{p,l}\) and \(F_3^{p,l }\).

First, let us analyze the term \(F_1^{p,l}\). Since K is supported in [0, 1] and according to (U1), we can write

$$\begin{aligned} F_1^{p,l}\le \frac{Cr_n}{nh\varPhi (h)}\sup _{x\in S_{\mathcal F}}\sum _{i=1}^{n} \vert Z_i^l \vert \delta _i^l S^{-l}(Z_i)1_{B(x,h)\cup {B(x_{j(x)},h)}}(X_i). \end{aligned}$$

Let

$$\begin{aligned} \xi _{i}=\frac{C r_n \vert Z_i^l \vert \delta _i^l S^{-l}(Z_i)}{h\varPhi (h)}\sup _{x\in S_{\mathcal F}}1_{B(x,h)\cup {B(x_{j(x)},h)}}(X_i). \end{aligned}$$

The assumptions (A1) and (U7), implie that

$$\begin{aligned} E|\xi _{1}^{m}|\le \frac{C r_{n}^{m}}{h^{m}\varPhi (h)^{m-1}}, \end{aligned}$$
(19)

so, by applying corollary A.8-(ii) in Ferraty and Vieu (2006), with \(a_{n}^{2}=\frac{r_n}{h\varPhi (h)}\),

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}\xi _{i}=E (\xi _{1})+O_{a.co.}\left( \sqrt{\frac{r_n\ln n}{nh\varPhi (h)}}\right) . \end{aligned}$$

Applying (19) again (for \(m=1\)), one gets

$$\begin{aligned} F_{1}^{p,l}=O\left( \frac{r_{n}}{h}\right) +O_{a.co.}\left( \sqrt{\frac{r_n\ln n}{nh\varPhi (h)}}\right) . \end{aligned}$$

Combining this equation with assumption (U5) and the second part of the assumption (U1), we obtain

$$\begin{aligned} F_{1}^{p,l}=O_{a.co.}\left( \sqrt{\frac{\ln d_n}{n\varPhi (h)}}\right) . \end{aligned}$$
(20)

Second, since

$$\begin{aligned} F_{3}^{p,l}\le E\left( \sup _{x\in S_{\mathcal F}}\left| M_{p,l}(x) - M_{p,l}(x_{j(x)})\right| \right) , \end{aligned}$$

we deduce that

$$\begin{aligned} F_{3}^{p,l}=O_{a.co.}\left( \sqrt{\frac{\ln d_n}{n\varPhi (h)}}\right) . \end{aligned}$$
(21)

Study of the term \(F_{2}^{p,l}.\)

For all \(\zeta >0\), we have that

$$\begin{aligned} {P}\left( F_{2}^{p,l}>\zeta \sqrt{\frac{\ln d_n}{n\varPhi (h)}}\;\right)= & {} {P}\left( \sup _{x\in S_{\mathcal {F}}}\left| M_{p,l} (x_{j(x)})- E(M_{p,l}(x_{j(x)})\right|> \zeta \sqrt{\frac{\ln d_n}{n\varPhi (h)}}\;\right) \\\le & d_{n} \max _{x_{j(x)}\in \{x_1,\ldots ,x_{d_n}\}}{P}\left( \frac{1}{n}\left| \sum _{i=1}^n \eta ^{(p,l)}_{i}(x_{j(x)})\right| >\zeta \sqrt{\frac{\ln d_n}{n\varPhi (h)}}\;\right) , \end{aligned}$$

where \(\eta ^{(p,l)}_{i}\) is defined in (11). By using again Corollary A.8-(ii) in Ferraty and Vieu (2006) and the assumption (U5), we obtain

$$\begin{aligned} F_{2}^{p,l}=O_{a.co.}\left( \sqrt{\frac{\ln d_n}{n\varPhi (h)}}\;\right) . \end{aligned}$$
(22)

Finally, the result of Lemma 8 follows from the relations (20), (22) and (21). \(\square\)

Proof of Lemma 10

By the relation (16), we can write

$$\begin{aligned} \sup _{x\in S_{\mathcal {F}}} \left| \widehat{m}_{1}(x)-\widetilde{m}_{1}(x)\right| \le C \sup \limits _{t \le T} \vert S_n(t)-S(t) \vert \sup _{x\in S_{\mathcal {F}}} \vert \widehat{m}_{0}(x) \vert . \end{aligned}$$

The proof is completed by the relation (17) and Lemma 9. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sara, L. Nonparametric local linear regression estimation for censored data and functional regressors. J. Korean Stat. Soc. 51, 25–46 (2022). https://doi.org/10.1007/s42952-020-00080-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-020-00080-7

Keywords

Mathematics Subject Classification

Navigation