Seeded intervals and noise level estimation in change point detection: a discussion of Fryzlewicz (2020)


In this discussion, we compare the choice of seeded intervals and that of random intervals for change point segmentation from practical, statistical and computational perspectives. Furthermore, we investigate a novel estimator of the noise level, which improves many existing model selection procedures (including the steepest drop to low levels), particularly for challenging frequent change point scenarios with low signal-to-noise ratios.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. Baranowski, R., Chen, Y., & Fryzlewicz, P. (2019). Narrowest-over-threshold detection of multiple change points and change-point-like features. Journal of the Royal Statistical Society Series B, 81(3), 649–672.

    MathSciNet  Article  Google Scholar 

  2. Du, C., Kao, C.-L. M., & Kou, S. C. (2016). Stepwise signal extraction via marginal likelihood. Journal of the American Statistical Association, 111(513), 314–330.

    MathSciNet  Article  Google Scholar 

  3. Fearnhead, P., & Rigaill, G. (2020). Relating and comparing methods for detecting changes in mean. Stat.

    Article  Google Scholar 

  4. Fryzlewicz, P. (2020). Detecting possibly frequent change-points: Wild Binary Segmentation 2 and steepest-drop model selection. Journal of the Korean Statistical Society.

    Article  Google Scholar 

  5. Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detection. The Annals of Statistics, 42(6), 2243–2281.

    MathSciNet  Article  Google Scholar 

  6. Hall, P., Kay, J. W., & Titterington, D. M. (1990). Asymptotically optimal difference-based estimation of variance in nonparametric regression. Biometrika, 77(3), 521–528.

    MathSciNet  Article  Google Scholar 

  7. Killick, R., Fearnhead, P., & Eckley, I. A. (2012). Optimal detection of changepoints with a linear computational cost. Journal of the American Statistical Association, 107(500), 1590–1598.

    MathSciNet  Article  Google Scholar 

  8. Kovács, S., Li, H., Bühlmann, P., & Munk, A. (2020). Seeded binary segmentation: a general methodology for fast and optimal change point detection.

  9. Kovács, S., Li, H., Haubner, L., Bühlmann, P., & Munk, A. (2020). Optimistic search strategies: change point detection without full grid search. Working Paper.

  10. Li, H., Munk, A., & Sieling, H. (2016). FDR-control in multiscale change-point segmentation. Electronic Journal of Statistics, 10(1), 918–959.

    MathSciNet  Article  Google Scholar 

  11. Londschien, M., Kovács, S., & Bühlmann, P. (2019). Change point detection for graphical models in the presence of missing values. Journal of Computational and Graphical Statistics. arXiv:1907.05409.

  12. Vostrikova, L. Y. (1981). Detecting disorder in multidimensional random processes. Soviet Mathematics Doklady, 24, 55–59.

    MATH  Google Scholar 

  13. Yao, Y.-C. (1988). Estimating the number of change-points via Schwarz’ criterion. Statistics and Probability Letters, 6(3), 181–189.

    MathSciNet  Article  Google Scholar 

Download references


Solt Kovács and Peter Bühlmann have received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 786461 CausalStats - ERC-2017-ADG). Housen Li gratefully acknowledges the support of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2067/1-390729940.

Author information



Corresponding author

Correspondence to Solt Kovács.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kovács, S., Li, H. & Bühlmann, P. Seeded intervals and noise level estimation in change point detection: a discussion of Fryzlewicz (2020). J. Korean Stat. Soc. (2020).

Download citation


  • Break points
  • Fast computation
  • Model selection
  • Reproducibility
  • Seeded binary segmentation
  • Steepest drop to low levels
  • Variance estimation
  • Wild binary segmentation 2