Abstract
Progressive censoring is essential for researchers in industry as a mean to remove subjects before the final termination point in order to save time and reduce cost. Recently, kernel density estimation has been intensively investigated due to its asymptotic properties and applications. In this paper, we investigate the asymptotic properties of the kernel density estimators based on progressive type-II censoring and their application to hazard function estimation. A bias-adjusted kernel density estimator is also proposed. Our simulation indicates that the kernel density estimates under progressive type-II censoring is competitive compared with kernel density estimates under simple random sampling, depending on the censoring schemes. An example regarding failure times of aircraft windshields is used to illustrate the proposed methods.
Similar content being viewed by others
References
Alexandre, B. T. (2009). Introduction to nonparametric estimation. New York: Springer.
Balakrishnan, N. (2007). Progressive censoring methodology: An appraisal. Test, 16(2), 211.
Balakrishnan, N., & Aggarwala, R. (2000). Progressive censoring: Theory, methods, and applications. New York: Springer.
Balakrishnan, N., & Cramer, E. (2014). The art of progressive censoring. New York: Birkhauser.
Balakrishnan, N., & Bordes, L. (2003). Nonparametric hazard rate estimation under progressive type-II censoring. Handbook of Statistics, 23, 227–249.
Baxter, M. J., Beardah, C. C., & Westwood, S. (2000). Sample size and related issues in the analysis of lead isotope data. Journal of Archaeological Science, 27(10), 973–980.
Berg, A., & Politis, D. (2009). CDF and survival function estimation with infinite-order kernels. Electronic Journal of Statistics, 3, 1436–1454.
Biswas, A., & Sundaram, R. (2006). Kernel survival function estimation based on doubly censored data. Communications in Statistics-Theory and Methods, 35(7), 1293–1307.
Blischke, W. R., & Murthy, D. P. (2000). Reliability: Modeling. Prediction and optimization. New York: Wiley.
Bordes, L. (2004). Nonparametric estimation under progressive censoring. Journal of Statistical Planning and Inference, 119(1), 171–189.
Bowman, A. W., & Azzalini, A. (1997). Applied smoothing techniques for data analysis: The kernel approach with S-Plus illustrations (Vol. 18). Oxford: OUP Oxford.
Cramer, E. (2014). Extreme value analysis for progressively type-II censored order statistics. Communications in Statistics-Theory and Methods, 43(10–12), 2135–2155.
DiNardo, J., Fortin, N. M., & Lemieux, T. (1995). Labor market institutions and the distribution of wages, 1973–1992: A semiparametric approach (No. w5093). Cambridge: National Bureau of Economic Research.
Ferreyra, R. A., Podestá, G. P., Messina, C. D., Letson, D., Dardanelli, J., Guevara, E., et al. (2001). A linked-modeling framework to estimate maize production risk associated with ENSO-related climate variability in Argentina. Agricultural and Forest Meteorology, 107(3), 177–192.
Fix, E., & Hodges, J. L. (1951). Discriminatory analysis-nonparametric discrimination: Consistency properties. Berkeley: California Univ Berkeley.
Jeffrey, S. S. (1996). Smoothing methods in statistics. New York: Springer.
Kamps, U. (1995). A concept of generalized order statistics. Journal of Statistical Planning and Inference, 48(1), 1–23.
Kamps, U. (1999). Order statistics, generalized. In Encyclopedia of Statistical Sciences.
Kim, K. D., & Heo, J. H. (2002). Comparative study of flood quantiles estimation by nonparametric models. Journal of Hydrology, 260(1), 176–193.
Lejeune, M., & Sarda, P. (1992). Smooth estimators of distribution and density functions. Computational Statistics & Data Analysis, 14(4), 457–471.
Lin, C. T., & Balakrishnan, N. (2011). Asymptotic properties of maximum likelihood estimators based on progressive type-II censoring. Metrika, 74, 349–360.
Nadaraya, E. A. (1974). On the integral mean square error of some nonparametric estimates for the density function. Theory of Probability & Its Applications, 19(1), 133–141.
Ng, H. K. T., Chan, P. S., & Balakrishnan, N. (2002). Estimation of parameters from progressively censored data using EM algorithm. Computational Statistics & Data Analysis, 39(4), 371–386.
Ng, H. K. T., Chan, P. S., & Balakrishnan, N. (2004). Optimal progressive censoring plan for Weibull distribution. Technometrics, 46, 470–481.
Paulsen, O., & Heggelund, P. (1996). Quantal properties of spontaneous EPSCs in neurones of the guinea-pig dorsal lateral geniculate nucleus. The Journal of Physiology, 496(Pt 3), 759.
Parzen, E. (1962). On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 33(3), 1065–1076.
Polansky, A. M., & Baker, E. R. (2000). Multistage plug-in bandwidth selection for kernel distribution function estimates. Journal of Statistical Computation and Simulation, 65(1–4), 63–80.
Ramlau-Hansen, H. (1983). Smoothing counting process intensities by means of kernel functions. The Annals of Statistics, 1, 453–466.
Rosenblatt, M. (1971). Curve estimates. The Annals of Mathematical Statistics, 42(6), 1815–1842.
Samawi, H., Rochani, H., Yin, J., Linder, D., & Vogel, R. (2018). Notes on kernel density based mode estimation using more efficient sampling designs. Computational Statistics, 33, 1–20.
See, C., & Chen, J. (2008). Inequalities on the variance of convex functions of random variables. Journal of inequalities in pure and applied mathematics, 9(3), 1–5.
Segal, M. R., & Wiemels, J. L. (2002). Clustering of translocation breakpoints. Journal of the American Statistical Association, 97(457), 66–76.
Simonoff, J. S. (2012). Smoothing methods in statistics. New York: Springer.
Singh, R. S. (1977). Applications of estimators of a density and its derivatives to certain statistical problems. Journal of the Royal Statistical Society Series B (Methodological), 39, 357–363.
Silverman, B. W. (1986). Density estimation for statistics and data analysis (Vol. 26). New York: CRC Press.
Tortosa-Ausina, E. (2002). Financial costs, operating costs, and specialization of Spanish banking firms as distribution dynamics. Applied Economics, 34(17), 2165–2176.
Viveros, R., & Balakrishnan, N. (1994). Interval estimation of parameters of life from progressively censored data. Technometrics, 36(1), 84–91.
Wand, M. P., & Jones, M. C. (1995). Kernel smoothing. London: Chapman & Hall.
Wolfgang, H., Marlene, M., Stefan, S., & Axel, W. (2004). Nonparametric and semiparametric models. Berlin: Springer.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Helu, A., Samawi, H., Rochani, H. et al. Kernel density estimation based on progressive type-II censoring. J. Korean Stat. Soc. 49, 475–498 (2020). https://doi.org/10.1007/s42952-019-00022-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42952-019-00022-y