Skip to main content
Log in

Review on Porous Asphalt Pavements: A Comprehensive Resolution for Stormwater Management and Applications in Current Built Environment

  • Review
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

Due to frequent storms and the expansion of impermeable surfaces brought on by urban development, urban areas are increasingly faced with flash flooding issues. Permeable pavements have consequently gained popularity as a possible remedy that not only resolves flash flood issues but also provides other environmental advantages to urban populations. Porous Asphalt (PA) pavements are a type of permeable pavement characterized by an open-graded friction course with a high percentage of air voids, facilitating the efficient removal of water from the pavement surface. It also offers a variety of additional advantages like noise reduction, groundwater recharge, water purification, mitigation of the urban heat island effect (UHI), reduced risk of hydroplaning, and improved skid and rut resistance, promoting sustainable urban development in addition to their structural advantages. In contrast, choosing PA for roads is a bit tricky because of some problems like clogging, moisture damage, and durability issues. This occurs during infiltration, freezing, and thawing cycles. So, deciding the applicability of PA is challenging. This study extensively examined various aspects of PA pavements, exploring parameters such as aggregate gradation, asphalt binder, modifiers, and geotextile fabric. The review goal was to understand factors that influence the design mix of PA pavements, aiming to enhance the durability and strength of PA pavements. Furthermore, various studies were reviewed to assess the performance evaluation parameters of PA pavements and differentiate between evaluation processes in comparison with dense asphalt (DA) pavement. This analysis aimed to identify variations in these parameters and provide valuable insights in determining whether the design mix aligns with the desired properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Pasquier, U., Vahmani, P., & Jones, A. D. (2022). Quantifying the city-scale impacts of impervious surfaces on groundwater recharge potential: An Urban Application of WRF–hydro. Water (Basel), 14, 3143. https://doi.org/10.3390/w14193143

    Article  Google Scholar 

  2. Jia, H., Yao, H., & Yu, S. L. (2013). Advances in LID BMPs research and practice for urban runoff control in China. Frontiers of Environmental Science & Engineering, 7, 709–720. https://doi.org/10.1007/s11783-013-0557-5

    Article  Google Scholar 

  3. Strohbach, M. W., Döring, A. O., Möck, M., Sedrez, M., Mumm, O., Schneider, A.-K., Weber, S., & Schröder, B. (2019). The “hidden urbanization”: trends of impervious surface in low-density housing developments and resulting impacts on the water balance. Frontiers in Environmental Science. https://doi.org/10.3389/fenvs.2019.00029

    Article  Google Scholar 

  4. Blum, A. G., Ferraro, P. J., Archfield, S. A., & Ryberg, K. R. (2020). Causal effect of impervious cover on annual flood magnitude for the United States. Geophysical Research Letters. https://doi.org/10.1029/2019GL086480

    Article  Google Scholar 

  5. Feng, B., Zhang, Y., & Bourke, R. (2021). Urbanization impacts on flood risks based on urban growth data and coupled flood models. Natural Hazards, 106, 613–627. https://doi.org/10.1007/s11069-020-04480-0

    Article  Google Scholar 

  6. Thomas, K. M., Mathew, N. V., Rajalekshmi, P. R., Kumar, R. S., & Koshy, R. Z. (2019). Water quality and performance assessment of porous asphalt mix modified using charcoal powder. Journal of Sustainable Engineering: Proceedings Series, 1, 123–136. https://doi.org/10.35793/joseps.v1i2.17

    Article  Google Scholar 

  7. Wakode, H. B., Baier, K., Jha, R., & Azzam, R. (2018). Impact of urbanization on groundwater recharge and urban water balance for the city of Hyderabad, India. International Soil and Water Conservation Research, 6, 51–62. https://doi.org/10.1016/j.iswcr.2017.10.003

    Article  Google Scholar 

  8. Ávila-Carrasco, J. R., Hernández-Hernández, M. A., Herrera, G. S., & Hernández-García, G. D. J. (2023). Urbanization effects on the groundwater potential recharge of the aquifers in the southern part of the Basin of Mexico. Hydrology Research, 54, 663–685. https://doi.org/10.2166/nh.2023.103

    Article  Google Scholar 

  9. Takizawa, S. (2008). Groundwater Use and Management in Urban Areas. Groundwater Management in Asian Cities (pp. 13–34). Tokyo: Springer Japan. https://doi.org/10.1007/978-4-431-78399-2_2

    Chapter  Google Scholar 

  10. Foster, S. (2022). The key role for groundwater in urban water-supply security. Journal of Water and Climate Change, 13, 3566–3577. https://doi.org/10.2166/wcc.2022.174

    Article  Google Scholar 

  11. García-Haba, E., Naves, J., Hernández-Crespo, C., Goya-Heredia, A., Suárez, J., Anta, J., & Andrés-Doménech, I. (2023). Influence of sediment characteristics on long-term hydrology and water quality behaviour during the clogging process of a permeable asphalt. Journal of Water Process Engineering, 53, 103658. https://doi.org/10.1016/j.jwpe.2023.103658

    Article  Google Scholar 

  12. Putman, B. J., & Kline, L. C. (2012). Comparison of mix design methods for porous asphalt mixtures. Journal of Materials in Civil Engineering, 24, 1359–1367. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000529

    Article  Google Scholar 

  13. Nasr, M., & Shmroukh, A. N. (2020). Gray-to-green infrastructure for stormwater management: An applicable approach in Alexandria City, Egypt. In A. M. Negm (Ed.), Flash Floods in Egypt (pp. 369–379). Cham: Springer.

    Chapter  Google Scholar 

  14. Zaltuom, A.M., A Review study of the effect of air voids on asphalt pavement life, In: Proceedings of First Conference for Engineering Sciences and Technology: Vol. 2, AIJR Publisher, (2018): pp. 618–625. https://doi.org/10.21467/proceedings.4.29.

  15. Sandberg, U. (2021). Why do clogged porous asphalt pavements give better traffic noise reduction than a dense-graded asphalt pavement? INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 263, 2020–2031. https://doi.org/10.3397/IN-2021-2031

    Article  Google Scholar 

  16. Zhao, S., Zhang, H., Feng, Y., Guo, Z., Yang, H., & Li, Y. (2023). Effect of temperature and water conditioning on noise and skid resistance of dense-graded, open-graded and gap-graded asphalt mixes. Ain Shams Engineering Journal, 15, 102281. https://doi.org/10.1016/j.asej.2023.102281

    Article  Google Scholar 

  17. Rungruangvirojn, P., & Kanitpong, K. (2010). Measurement of visibility loss due to splash and spray: Porous, SMA and conventional asphalt pavements. International Journal of Pavement Engineering, 11, 499–510. https://doi.org/10.1080/10298430903578945

    Article  Google Scholar 

  18. Dumas, G., & Lemay, J. (2004). Splash and Spray Measurement and Control: Recent Progress in Quebec. In R. McCallen, F. Browand, & J. Ross (Eds.), The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains (pp. 533–547). Berlin: Springer. https://doi.org/10.1007/978-3-540-44419-0_47

    Chapter  Google Scholar 

  19. Drake, P. O. A., Willstrand, O., Andersson, A., & Biswanger, H. (2021). Physical characteristics of splash and spray clouds produced by heavy vehicles (trucks and lorries) driven on wet asphalt. Journal of Wind Engineering and Industrial Aerodynamics, 217, 104734. https://doi.org/10.1016/j.jweia.2021.104734

    Article  Google Scholar 

  20. Slebi-Acevedo, C. J., Lastra-González, P., Indacoechea-Vega, I., & Castro-Fresno, D. (2020). Laboratory assessment of porous asphalt mixtures reinforced with synthetic fibers. Construction and Building Materials, 234, 117224. https://doi.org/10.1016/j.conbuildmat.2019.117224

    Article  Google Scholar 

  21. Joohari, M. I., Aziz, N. A., Daud, N. M., Mansor, S., & Abdul Halim, M. A. (2019). Performance of porous asphalt pavement using clay brick dust as mineral filler. Journal of Physics: Conference Series, 1349, 012098. https://doi.org/10.1088/1742-6596/1349/1/012098

    Article  Google Scholar 

  22. Dell’acqua, G., De Luca, M., & Lamberti, R. (2011). Indirect skid resistance measurement for porous asphalt pavement management. Transportation Research Record: Journal of the Transportation Research Board, 2205, 147–154. https://doi.org/10.3141/2205-19

    Article  Google Scholar 

  23. Shams, A., Sarasua, W. A., Putman, B. J., Davis, W. J., & Ogle, J. H. (2020). Highway cross-sectional design and maintenance to minimize hydroplaning. Journal of Transportation Engineering Part B Pavements. https://doi.org/10.1061/JPEODX.0000213

    Article  Google Scholar 

  24. King, W., Kabir, S., Cooper, S. B., & Abadie, C. (2013) Evaluation of open graded friction course (OGFC) Mixtures October 2013 6. Performing Organization Code 13. Type of Report and Period Covered Final Report

  25. Padilha Thives, L., Ghisi, E., Gherardt Brecht, D., & Menegasso Pires, D. (2018). Filtering capability of porous asphalt pavements. Water (Basel), 10, 206. https://doi.org/10.3390/w10020206

    Article  Google Scholar 

  26. Liu, J., Li, H., Yang, B., Xie, N., & Ning, Y. (2022). Laboratory investigation on pollutant removal effect of purification materials for porous asphalt pavement. Transportation Research Record: Journal of the Transportation Research Board, 2676, 421–435. https://doi.org/10.1177/03611981221086939

    Article  Google Scholar 

  27. Jayakaran, A., Knappenberger, T., Stark, J., & Hinman, C. (2019). Remediation of stormwater pollutants by porous asphalt pavement. Water (Basel), 11, 520. https://doi.org/10.3390/w11030520

    Article  Google Scholar 

  28. Ting, M. Z. Y., Wong, K. S., Rahman, M. E., & Joo, M. S. (2020). Mechanical and durability performance of marine sand and seawater concrete incorporating silicomanganese slag as coarse aggregate. Construction and Building Materials, 254, 119195.

    Article  Google Scholar 

  29. Nath, S. K., Randhawa, N. S., & Kumar, S. (2022). A review on characteristics of silico-manganese slag and its utilization into construction materials. Resources, Conservation and Recycling, 176, 105946.

    Article  Google Scholar 

  30. Chu, X., Campos-Guereta, I., Dawson, A., & Thom, N. (2023). Sustainable pavement drainage systems: Subgrade moisture, subsurface drainage methods and drainage effectiveness. Construction and Building Materials, 364, 129950. https://doi.org/10.1016/j.conbuildmat.2022.129950

    Article  Google Scholar 

  31. Yu, T., Zhang, H., & Wang, Y. (2020). Interaction of asphalt and water between porous asphalt pavement voids with different aging stage and its significance to drainage. Construction and Building Materials, 252, 119085. https://doi.org/10.1016/j.conbuildmat.2020.119085

    Article  Google Scholar 

  32. Wijeyawardana, P., Nanayakkara, N., Gunasekara, C., Karunarathna, A., Law, D., & Pramanik, B. K. (2022). Improvement of heavy metal removal from urban runoff using modified pervious concrete. Science of The Total Environment, 815, 152936. https://doi.org/10.1016/j.scitotenv.2022.152936

    Article  Google Scholar 

  33. Suddeepong, A., Buritatum, A., Dasdawan, S., Horpibulsuk, S., Yaowarat, T., Hoy, M., & Arulrajah, A. (2023). Mechanical performance of porous asphalt concrete incorporating bottom ash as fine aggregate. Journal of Materials in Civil Engineering. https://doi.org/10.1061/JMCEE7.MTENG-15233

    Article  Google Scholar 

  34. Liu, Y., Li, T., & Yu, L. (2020). Urban heat island mitigation and hydrology performance of innovative permeable pavement: A pilot-scale study. Journal of Cleaner Production, 244, 118938. https://doi.org/10.1016/J.JCLEPRO.2019.118938

    Article  Google Scholar 

  35. Alber, S., Ressel, W., & Schuck, B. (2022). Explaining drainage of porous asphalt with hydrological modelling. International Journal of Pavement Engineering, 23, 1561–1571. https://doi.org/10.1080/10298436.2020.1811278

    Article  Google Scholar 

  36. Eka Putri, E., & Vasilsa, O. (2019). Improve the Marshall stability of porous asphalt pavement with HDPE addition. MATEC Web of Conferences, 276, 03005. https://doi.org/10.1051/matecconf/201927603005

    Article  Google Scholar 

  37. Shambhavi, S., Mahalingegowda, R. M., Manjunath, K. C., & Abhishek, G. B. (2023). An experimental study on the performance of porous asphalt cool pavement. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.04.314

    Article  Google Scholar 

  38. Mabui, D. S., Tjaronge, M. W., Adisasmita, S. A., & Pasra, M. (2020). Resistance to cohesion loss in cantabro test on specimens of porous asphalt containing modificated asbuton. IOP Conference Series: Earth and Environmental Science, 419, 012100. https://doi.org/10.1088/1755-1315/419/1/012100

    Article  Google Scholar 

  39. Zhang, Z., Sha, A., Liu, X., Luan, B., Gao, J., Jiang, W., & Ma, F. (2020). State-of-the-art of porous asphalt pavement: Experience and considerations of mixture design. Construction and Building Materials, 262, 119998. https://doi.org/10.1016/j.conbuildmat.2020.119998

    Article  Google Scholar 

  40. Liu, Q., Liu, S., Hu, G., Yang, T., Du, C., & Oeser, M. (2021). Infiltration capacity and structural analysis of permeable pavements for sustainable Urban: A full-scale case study. Journal of Cleaner Production, 288, 125111. https://doi.org/10.1016/j.jclepro.2020.125111

    Article  Google Scholar 

  41. Akhtar, M. N., Al-Shamrani, A. M., Jameel, M., Khan, N. A., Ibrahim, Z., & Akhtar, J. N. (2021). Stability and permeability characteristics of porous asphalt pavement: An experimental case study. Case Studies in Construction Materials, 15, e00591. https://doi.org/10.1016/j.cscm.2021.e00591

    Article  Google Scholar 

  42. Wu, J., Wang, Y., Liu, Q., Wang, Y., Ago, C., & Oeser, M. (2020). Investigation on mechanical performance of porous asphalt mixtures treated with laboratory aging and moisture actions. Construction and Building Materials, 238, 117694. https://doi.org/10.1016/j.conbuildmat.2019.117694

    Article  Google Scholar 

  43. Lin, P., Liu, X., Ren, S., Li, Y., Xu, J., & Li, M. (2023). Unraveling the influence of fibers on aging susceptibility and performance of high content polymer modified asphalt mixtures. Case Studies in Construction Materials, 18, e02211. https://doi.org/10.1016/j.cscm.2023.e02211

    Article  Google Scholar 

  44. Huang, W., Yu, H., Lin, Y., Zheng, Y., Ding, Q., Tong, B., & Wang, T. (2022). Energy analysis for evaluating durability of porous asphalt mixture. Construction and Building Materials, 326, 126819. https://doi.org/10.1016/j.conbuildmat.2022.126819

    Article  Google Scholar 

  45. Wang, X., Ren, J., Hu, X., Li, Q., & Ji, X. (2023). Meso-scale adhesive/cohesive failure behaviors of porous asphalt mixtures considering random inhomogeneous distribution of binder. Construction and Building Materials, 403, 133097. https://doi.org/10.1016/j.conbuildmat.2023.133097

    Article  Google Scholar 

  46. Lin, P., Liu, X., Ren, S., Xu, J., Li, Y., & Li, M. (2023). Effects of bitumen thickness on the aging behavior of high-content polymer-modified asphalt mixture. Polymers (Basel), 15, 2325. https://doi.org/10.3390/polym15102325

    Article  Google Scholar 

  47. Wu, J., Li, F., & Ma, Q. (2020). Effect of polyester fiber on air voids and low-temperature crack resistance of permeable asphalt mixture. Advances in Civil Engineering, 2020, 1–12. https://doi.org/10.1155/2020/2381504

    Article  Google Scholar 

  48. Ushani, U., Lu, X., Wang, J., Zhang, Z., Dai, J., Tan, Y., Wang, S., Li, W., Niu, C., Cai, T., Wang, N., & Zhen, G. (2020). Sulfate radicals-based advanced oxidation technology in various environmental remediation: A state-of-the–art review. Chemical Engineering Journal, 402, 126232. https://doi.org/10.1016/J.CEJ.2020.126232

    Article  Google Scholar 

  49. Poor, C., Kaye, J., Struck, R., & Gonzalez, R. (2023). Permeable pavement in the northwestern United States: Pollution source or treatment option? Sustainability, 15, 12926. https://doi.org/10.3390/su151712926

    Article  Google Scholar 

  50. Ren, S., Liu, X., Xu, J., & Lin, P. (2021). Investigating the role of swelling-degradation degree of crumb rubber on CR/SBS modified porous asphalt binder and mixture. Construction and Building Materials, 300, 124048. https://doi.org/10.1016/j.conbuildmat.2021.124048

    Article  Google Scholar 

  51. Hu, J., Ma, T., Zhu, Y., Huang, X., Xu, J., & Chen, L. (2021). High-viscosity modified asphalt mixtures for double-layer porous asphalt pavement: Design optimization and evaluation metrics. Construction and Building Materials, 271, 121893. https://doi.org/10.1016/j.conbuildmat.2020.121893

    Article  Google Scholar 

  52. Gupta, A., Lastra-Gonzalez, P., Rodriguez-Hernandez, J., González González, M., & Castro-Fresno, D. (2021). Critical assessment of new polymer-modified bitumen for porous asphalt mixtures. Construction and Building Materials, 307, 124957. https://doi.org/10.1016/j.conbuildmat.2021.124957

    Article  Google Scholar 

  53. Tian, Y., Li, H., Sun, L., Zhang, H., Harvey, J., Yang, J., Yang, B., & Zuo, X. (2021). Laboratory investigation on rheological, chemical and morphological evolution of high content polymer modified bitumen under long-term thermal oxidative aging. Construction and Building Materials, 303, 124565. https://doi.org/10.1016/j.conbuildmat.2021.124565

    Article  Google Scholar 

  54. Lastra-González, P., Calzada-Pérez, M. Á., Castro-Fresno, D., Vega-Zamanillo, Á., & Indacoechea-Vega, I. (2017). Porous asphalt mixture with alternative aggregates and crumb-rubber modified binder at reduced temperature. Construction and Building Materials, 150, 260–267. https://doi.org/10.1016/j.conbuildmat.2017.06.008

    Article  Google Scholar 

  55. Cheng, Y., Chai, C., Zhang, Y., Chen, Y., & Zhu, B. (2019). A new eco-friendly porous asphalt mixture modified by crumb rubber and basalt fiber. Sustainability, 11, 5754. https://doi.org/10.3390/su11205754

    Article  Google Scholar 

  56. Liu, J., Wang, Z., Jing, H., Zhang, X., Shi, W., Zhou, X., Yuan, L., Wang, X., & Hoff, I. (2023). Sustainable utilization of recycled waste in high-viscosity asphalt binders: Case for improvement in aging resistance. Journal of Materials in Civil Engineering. https://doi.org/10.1061/JMCEE7.MTENG-16026

    Article  Google Scholar 

  57. Li, M., Zeng, F., Xu, R., Cao, D., & Li, J. (2019). Study on compatibility and rheological properties of high-viscosity modified asphalt prepared from low-grade asphalt. Materials, 12, 3776. https://doi.org/10.3390/ma12223776

    Article  Google Scholar 

  58. Liang, X., Yu, X., Chen, C., Ding, G., & Huang, J. (2022). Towards the low-energy usage of high viscosity asphalt in porous asphalt pavements: A case study of warm-mix asphalt additives. Case Studies in Construction Materials, 16, e00914. https://doi.org/10.1016/j.cscm.2022.e00914

    Article  Google Scholar 

  59. Chen, J.-S., Sun, Y.-C., Liao, M.-C., & Huang, C.-C. (2012). Effect of binder types on engineering properties and performance of porous asphalt concrete. Transportation Research Record: Journal of the Transportation Research Board, 2293, 55–62. https://doi.org/10.3141/2293-07

    Article  Google Scholar 

  60. Slabonski, P., Stankiewicz, B., & Beben, D. (2021). Influence of a rejuvenator on homogenization of an asphalt mixture with increased content of reclaimed asphalt pavement in lowered technological temperatures. Materials, 14, 2567. https://doi.org/10.3390/ma14102567

    Article  Google Scholar 

  61. Zhang, Y., Van de Ven, M. F. C., Molenaar, A. A. A., Wu, S. (2012) Increasing the service life of porous asphalt with rejuvenators, in: sustainable construction materials 2012, American Society of Civil Engineers, Reston, VA,: pp. 318–330. https://doi.org/10.1061/9780784412671.0027.

  62. Zhao, M. Y., Shen, F., Qiao, L. G., Lu, J., & Ding, Q. J. (2015). Effect of rejuvenator on porous asphalt mixtures containing reclaimed asphalt pavement (RAP) material. Applied Mechanics and Materials, 713–715, 2673–2676. https://doi.org/10.4028/www.scientific.net/AMM.713-715.2673

    Article  Google Scholar 

  63. Xu, S., Liu, X., Tabaković, A., Lin, P., Zhang, Y., Nahar, S., Lommerts, B. J., & Schlangen, E. (2021). The role of rejuvenators in embedded damage healing for asphalt pavement. Materials and Design, 202, 109564. https://doi.org/10.1016/j.matdes.2021.109564

    Article  Google Scholar 

  64. Xu, B., Ding, R., Yang, Z., Sun, Y., Zhang, J., Lu, K., Cao, D., & Gao, A. (2023). Investigation on performance of mineral-oil-based rejuvenating agent for aged high viscosity modified asphalt of porous asphalt pavement. Journal of Cleaner Production, 395, 136285. https://doi.org/10.1016/j.jclepro.2023.136285

    Article  Google Scholar 

  65. Almeida, A., & Picado-Santos, L. (2022). Asphalt road pavements to address climate change challenges—An overview. Applied Sciences, 12, 12515. https://doi.org/10.3390/app122412515

    Article  Google Scholar 

  66. Fan, J., Xu, G., Zhu, Y., & Cai, Z. (2023). Feasibility of siliceous sandstone utilization in porous asphalt mixture. Journal of Transportation Engineering Part B Pavements. https://doi.org/10.1061/JPEODX.PVENG-1028

    Article  Google Scholar 

  67. Chen, X., Jiang, Y., Xu, T., Liu, S., Zhang, W., & Gan, X. (2023). Surface modification of basalt aggregate by coupling agent to improve the interfacial adhesion with asphalt binder. Journal of Materials in Civil Engineering. https://doi.org/10.1061/JMCEE7.MTENG-15776

    Article  Google Scholar 

  68. Alnadish, A. M., Singh, N. S. S., & Alawag, A. M. (2023). Applications of synthetic, natural, and waste fibers in asphalt mixtures: a citation-based review. Polymers (Basel), 15, 1004. https://doi.org/10.3390/polym15041004

    Article  Google Scholar 

  69. Yang, Z., Wang, L., Xu, B., Li, S., Cao, D., Yuan, B., & Dong, R. (2022). Study of the durability of a fully permeable asphalt pavement structure based on the accelerated pavement test method under saturated conditions. Journal of Transportation Engineering, Part B Pavements. https://doi.org/10.1061/JPEODX.0000340

    Article  Google Scholar 

  70. Lin, C., Galinmoghadam, J., Han, J., Liu, J., & Zhang, X. (2021). Quantifying and Incorporating the benefits of wicking geotextile into pavement design. Journal of Transportation Engineering, Part B Pavements. https://doi.org/10.1061/JPEODX.0000300

    Article  Google Scholar 

  71. Galinmoghadam, J., Liu, J., Zhang, X., Lin, C., & Guo, Y. (2022). Mitigating pumping in pavement shoulder using wicking geotextile: An experimental study. Transportation Research Record: Journal of the Transportation Research Board, 2676, 145–159. https://doi.org/10.1177/03611981221091730

    Article  Google Scholar 

  72. Zhao, Y., Zhou, S., Zhao, C., & Valeo, C. (2018). The Influence of geotextile type and position in a porous asphalt pavement system on Pb (II) removal from stormwater. Water (Basel), 10, 1205. https://doi.org/10.3390/w10091205

    Article  Google Scholar 

  73. Li, H., Liu, J., Zhang, H., & Harvey, J. (2021). Investigation on the effect of fine solid wastes on the runoff purification performance of porous asphalt mixture. Journal of Environmental Management, 300, 113612. https://doi.org/10.1016/j.jenvman.2021.113612

    Article  Google Scholar 

  74. Hu, X., Dai, K., & Pan, P. (2019). Investigation of engineering properties and filtration characteristics of porous asphalt concrete containing activated carbon. Journal of Cleaner Production, 209, 1484–1493. https://doi.org/10.1016/j.jclepro.2018.11.115

    Article  Google Scholar 

  75. Li, B., Sun, M., Zhu, X., Cao, K., & Kong, Y. (2023). Investigation of permeability persistence of porous asphalt concrete under coupled conditions of clogging and cleaning. Journal of Transportation Engineering, Part B Pavements. https://doi.org/10.1061/JPEODX.PVENG-1252

    Article  Google Scholar 

  76. Hussein, S. A., Al-Khafaji, Z., Alfatlawi, T., & Abbood, A.-K.N. (2022). Assessment of surface and subsurface drainage from permeable friction course (as a sustainable pavement) under different geometric and hydrologic conditions. Iraqi Geological Journal, 55, 196–207. https://doi.org/10.46717/igj.55.2A.14Ms-2022-07-30

    Article  Google Scholar 

  77. Yang, W., Zhang, J., & Krebs, P. (2022). Low impact development practices mitigate urban flooding and non-point pollution under climate change. Journal of Cleaner Production, 347, 131320. https://doi.org/10.1016/j.jclepro.2022.131320

    Article  Google Scholar 

  78. Brudler, S., Arnbjerg-Nielsen, K., Hauschild, M. Z., & Rygaard, M. (2016). Life cycle assessment of stormwater management in the context of climate change adaptation. Water Research, 106, 394–404. https://doi.org/10.1016/j.watres.2016.10.024

    Article  Google Scholar 

  79. Sharmin, R., Martin, W. D., & Kaye, N. B. (2022). Hydrologic performance of distributed LID stormwater infrastructure on land developments under a changing climate: site-scale performance improvements. Journal of Irrigation and Drainage Engineering. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001684

    Article  Google Scholar 

  80. Hou, L., Feng, S., Huo, Z., Ding, Y., & Zhang, S. (2008). Experimental study on rainfall-runoff relation for porous pavements. Hydrology Research, 39, 181–190. https://doi.org/10.2166/nh.2008.001

    Article  Google Scholar 

  81. Yang, Q., Beecham, S., Liu, J., & Pezzaniti, D. (2019). The influence of rainfall intensity and duration on sediment pathways and subsequent clogging in permeable pavements. Journal of Environmental Management, 246, 730–736. https://doi.org/10.1016/j.jenvman.2019.05.151

    Article  Google Scholar 

  82. Yu, T., Zhang, H., Wang, N., Wang, H., & Chen, D. (2022). Multi-scale analysis of sustainable service performance for porous asphalt pavement in Sponge City under freeze-thaw environment. Urban Water J, 19, 173–182. https://doi.org/10.1080/1573062X.2021.1974893

    Article  Google Scholar 

  83. Yu, D., Jing, H., & Liu, J. (2022). Effects of freeze-thaw cycles on the internal voids structure of asphalt mixtures. Materials, 15, 3560. https://doi.org/10.3390/ma15103560

    Article  Google Scholar 

  84. Liu, D., Zhang, H., Yu, T., Sun, J., Shan, Z., & He, D. (2022). Meso-structural characteristics of porous asphalt mixture based on temperature-stress coupling and its influence on aggregate damage. Construction and Building Materials, 342, 128064. https://doi.org/10.1016/j.conbuildmat.2022.128064

    Article  Google Scholar 

  85. Yu, T., Zhang, H., Sun, J., Chen, D., Wang, H., & Feng, Y. (2022). Influence of freezing and thawing on drainage behaviour for porous asphalt pavement based on molecular dynamics simulation. International Journal of Pavement Engineering, 23, 4897–4908. https://doi.org/10.1080/10298436.2021.1984476

    Article  Google Scholar 

  86. Zhao, Y., Peng, Y., Zhao, Q., Chen, Y., & Chu, X. (2023). Preparation of a green sustained-release microcapsule-type anti-icing agent for asphalt pavement and its application demonstration project. ACS Omega, 8, 4906–4920. https://doi.org/10.1021/acsomega.2c07212

    Article  Google Scholar 

  87. Xia, H., Zhao, X., Wu, Y., Yuan, T., Song, L., Yan, M., Wang, F., & Chen, H. (2020). Preparation and performance of antifreeze adhesive materials for asphalt pavement. Construction and Building Materials, 258, 119554. https://doi.org/10.1016/j.conbuildmat.2020.119554

    Article  Google Scholar 

  88. Zhang, H., Zhang, J., Hu, Q., Chen, Z., & Huang, G. (2023). Preparation and performance evaluation of deicing permeable asphalt mixture. Journal of Materials in Civil Engineering. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004589

    Article  Google Scholar 

  89. Saberi Kerahroudi, F., Wang, Y. D., & Liu, J. (2023). Evaluation of thermal and rheological properties of phase change material-incorporated asphalt mastic with porous fillers. Transportation Research Record: Journal of the Transportation Research Board. https://doi.org/10.1177/03611981231172750

    Article  Google Scholar 

  90. Kuai, C., Chen, J., Shi, X., & Grasley, Z. (2021). Regulating porous asphalt concrete temperature using PEG/SiO2 phase change composite: Experiment and simulation. Construction and Building Materials, 273, 122043. https://doi.org/10.1016/j.conbuildmat.2020.122043

    Article  Google Scholar 

  91. Chen, J., Zhang, W., Shi, X., Yao, C., & Kuai, C. (2020). Use of PEG/SiO2 phase change composite to control porous asphalt concrete temperature. Construction and Building Materials, 245, 118459. https://doi.org/10.1016/j.conbuildmat.2020.118459

    Article  Google Scholar 

  92. Anupam, B. R., Sahoo, U. C., Chandrappa, A. K., & Rath, P. (2021). Emerging technologies in cool pavements: A review. Construction and Building Materials, 299, 123892. https://doi.org/10.1016/j.conbuildmat.2021.123892

    Article  Google Scholar 

  93. Wang, C., Wang, Z.-H., Kaloush, K. E., & Shacat, J. (2021). Cool pavements for urban heat island mitigation: A synthetic review. Renewable and Sustainable Energy Reviews, 146, 111171. https://doi.org/10.1016/j.rser.2021.111171

    Article  Google Scholar 

  94. Shamsaei, M., Carter, A., & Vaillancourt, M. (2022). A review on the heat transfer in asphalt pavements and urban heat island mitigation methods. Construction and Building Materials, 359, 129350. https://doi.org/10.1016/j.conbuildmat.2022.129350

    Article  Google Scholar 

  95. Li, Z., Guo, T., Chen, Y., Wang, C., Chen, Q., Ding, S., Chen, Q., & Chen, H. (2022). Preparation and properties of new thermal reflective coating for asphalt pavement. Materials, 15, 8087. https://doi.org/10.3390/ma15228087

    Article  Google Scholar 

  96. Dhandapani, B. P., & Mullapudi, R. S. (2023). Design and performance characteristics of cement grouted bituminous mixtures - a review. Construction and Building Materials, 369, 130586. https://doi.org/10.1016/j.conbuildmat.2023.130586

    Article  Google Scholar 

  97. Davoodi, A., Aboutalebi Esfahani, M., Bayat, M., Mohammadyan-Yasouj, S. E., & Rahman, A. (2022). Influence of nano-silica modified rubber mortar and EVA modified porous asphalt on the performance improvement of modified semi-flexible pavement. Construction and Building Materials, 337, 127573. https://doi.org/10.1016/j.conbuildmat.2022.127573

    Article  Google Scholar 

  98. Chen, J.-S., Lee, C.-T., & Lin, Y.-Y. (2017). Influence of engineering properties of porous asphalt concrete on long-term performance. Journal of Materials in Civil Engineering. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001768

    Article  Google Scholar 

  99. Sangiorgi, C., Eskandarsefat, S., Tataranni, P., Simone, A., Vignali, V., Lantieri, C., & Dondi, G. (2017). A complete laboratory assessment of crumb rubber porous asphalt. Construction and Building Materials, 132, 500–507. https://doi.org/10.1016/j.conbuildmat.2016.12.016

    Article  Google Scholar 

  100. Masri, K. A., Arshad, A. K., Ahmad, J., & Samsudin, M. S. (2016). Abrasion Loss and Binder Draindown of Porous Asphalt with Nanosilica-Modified Binder. In Y. Marina (Ed.), CIEC 2015 (pp. 907–919). Cham: Springer.

    Google Scholar 

  101. Shahnewaz, S. M., Masri, K. A., Ghani, N. A., Jaya, R. P., Choo, C. S., Giannakopoulou, P. P., Rogkala, A., Lampropoulou, P., & Petrounias, P. (2023). Porous asphalt mixtures enriched with bamboo fibers as a new approach for future sustainable construction. Construction and Building Materials, 407, 133456. https://doi.org/10.1016/j.conbuildmat.2023.133456

    Article  Google Scholar 

  102. Khalid, S. W., Ahmad, B. M., & AL-Hadad,. (2023). A comparison study of using polyethylene terephthalate and limestone fillers on porous asphalt mixture behaviours. Ain Shams Engineering Journal. https://doi.org/10.1016/j.asej.2023.102426

    Article  Google Scholar 

  103. Chen, J. S., Chen, S. F., & Liao, M. C. (2015) Laboratory and field evaluation of porous asphalt concrete, Asian Transport Studies.

  104. Luo, S., Lu, Q., & Qian, Z. (2015). Performance evaluation of epoxy modified open-graded porous asphalt concrete. Construction and Building Materials, 76, 97–102. https://doi.org/10.1016/j.conbuildmat.2014.11.057

    Article  Google Scholar 

  105. Cetin, A. (2013). Effects of crumb rubber size and concentration on performance of porous asphalt mixtures. International Journal of Polymer Science, 2013, 1–10. https://doi.org/10.1155/2013/789612

    Article  Google Scholar 

  106. Ma, X., Li, Q., Cui, Y.-C., & Ni, A.-Q. (2018). Performance of porous asphalt mixture with various additives. International Journal of Pavement Engineering, 19, 355–361. https://doi.org/10.1080/10298436.2016.1175560

    Article  Google Scholar 

  107. Radzi, N. A. M., Masri, K. A., Ramadhansyah, P. J., Jasni, N. E., Arshad, A. K., Ahmad, J., Mashros, N., & Yaacob, H. (2020). Stability and resilient modulus of porous asphalt incorporating steel fiber. IOP Conf Ser Mater Sci Eng, 712, 012027. https://doi.org/10.1088/1757-899X/712/1/012027

    Article  Google Scholar 

  108. Xiao, J., Wang, T., Hong, J., Ruan, C., Zhang, Y., Yuan, D., & Wu, W. (2023). experimental study of permeable asphalt mixture containing reclaimed asphalt pavement. Sustainability, 15, 10676. https://doi.org/10.3390/su151310676

    Article  Google Scholar 

  109. Ng, C. M., Liew, S. I. N., Jaya, R. P., Masri, K. A., Jaafar, Z. F. M., Mohamed, A. A., & Hassan, N. A. (2023) Hassan, cleaning effect on clogged porous asphalt mixture, In: https://doi.org/10.1063/5.0113689.

  110. Albayati, A., Al- Mosawe, H., Sukhija, M., & Naidu, A. N. P. (2023). Appraising the synergistic use of recycled asphalt pavement and recycled concrete aggregate for the production of sustainable asphalt concrete. Case Studies in Construction Materials, 19, e02237. https://doi.org/10.1016/j.cscm.2023.e02237

    Article  Google Scholar 

  111. Rahmawati, A., Soebandono, B., Widodo, W., & Fitriana, I. R. (2023). The effect of using steel slag waste on stability in porous asphalt mixture. E3S Web of Conferences, 429, 05009. https://doi.org/10.1051/e3sconf/202342905009

    Article  Google Scholar 

  112. Gundrathi, N. G., Swetha, K., Sriharsha, G., Sabitha, G., & Ruchitha, G. (2023). Feasibility study and mix design of porous asphalt with waste plastics. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.02.320

    Article  Google Scholar 

  113. De Pascale, B., Tataranni, P., Lantieri, C., Bonoli, A., & Sangiorgi, C. (2023). Innovative light-coloured porous asphalt for low-impact pavements: A laboratory investigation. Construction and Building Materials, 368, 130482. https://doi.org/10.1016/j.conbuildmat.2023.130482

    Article  Google Scholar 

  114. Chiranjeevi, G., & Shankar, S. (2023). Effect of Aggregate Proportion and Skeleton on the Strength of Porous Asphalt Mix. IOP Conf Ser Mater Sci Eng, 1291, 012002. https://doi.org/10.1088/1757-899X/1291/1/012002

    Article  Google Scholar 

  115. Chen, S., Gu, L., Tu, Z., Ma, T., & Kang, L. (2023). Mechanical properties of porous asphalt mixtures containing styrene-butadiene-styrene and high-viscosity modifiers. Journal of Materials in Civil Engineering. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004495

    Article  Google Scholar 

  116. Ghafari Hashjin, N., Zarroodi, R., Payami, M., & Aghdasi Gehraz, S. H. (2023). Effect of type and aggregate gradation on the functional properties of porous asphalt (case study of Iran). SN Applied Sciences, 5, 265. https://doi.org/10.1007/s42452-023-05480-y

    Article  Google Scholar 

  117. De Pascale, B., Tataranni, P., Lantieri, C., Bonoli, A., & Vignali, V. (2023). Mechanical performance and environmental assessment of porous asphalt mixtures produced with EAF steel slags and RAP aggregates. Construction and Building Materials, 400, 132889. https://doi.org/10.1016/j.conbuildmat.2023.132889

    Article  Google Scholar 

  118. Luxman, N. N., Hassan, N. A., Jaya, R. P., Warid, M. N. M., Azahar, N. M., Mahmud, M. Z. H., & Ismail, S. (2019). Effect of compaction temperature on porous asphalt performance. IOP Conf Ser Earth Environ Sci, 244, 012011. https://doi.org/10.1088/1755-1315/244/1/012011

    Article  Google Scholar 

  119. Hosseinzad Derakhshan, M. A., Ameri, M., & Ebrahimi Farshchi, M. (2023). Performance evaluation and self-healing properties of asphalt mixtures containing RAP materials and rice bran oil capsules. Journal of Materials in Civil Engineering. https://doi.org/10.1061/JMCEE7.MTENG-15854

    Article  Google Scholar 

  120. Siaw Ing, N. L., Ng, C. M., Mohd Sori, N. S. N. B., Putra Jaya, R., & Masri, K. A. (2023). Influence of aggregates shape on porous asphalt mixture. Construction, 3, 1–5. https://doi.org/10.15282/construction.v3i1.8813

    Article  Google Scholar 

  121. Hammes, G., & Thives, L. P. (2023). Porous asphalt mixture with improved fatigue resistance and stormwater pollutant reduction in urban road pavement. Water (Basel), 15, 2962. https://doi.org/10.3390/w15162962

    Article  Google Scholar 

  122. Syammaun, T., & Rani, H. A. (2018). Resilient modulus of porous asphalt using oil palm fiber. IOP Conf Ser Mater Sci Eng, 403, 012023. https://doi.org/10.1088/1757-899X/403/1/012023

    Article  Google Scholar 

  123. Mousavi Rad, S., Kamboozia, N., Ameri, M., & Mirabdolazimi, S. M. (2023). Feasibility of concurrent improvement of pollutants-absorption ability from surface runoff and mechanical performance of asphalt mixtures by using photocatalytic nanomodified porous asphalt. Journal of Materials in Civil Engineering. https://doi.org/10.1061/JMCEE7.MTENG-14543

    Article  Google Scholar 

  124. Shirini, B., & Imaninasab, R. (2016). Performance evaluation of rubberized and SBS modified porous asphalt mixtures. Construction and Building Materials, 107, 165–171. https://doi.org/10.1016/j.conbuildmat.2016.01.006

    Article  Google Scholar 

  125. Zhang, K., Liu, Y., Nassiri, S., Li, H., & Englund, K. (2021). Performance evaluation of porous asphalt mixture enhanced with high dosages of cured carbon fiber composite materials. Construction and Building Materials, 274, 122066. https://doi.org/10.1016/j.conbuildmat.2020.122066

    Article  Google Scholar 

  126. Xu, L., Zhang, Y., Zhang, Z., Ni, H., Hu, M., & Sun, D. (2023). Optimization design of rubberized porous asphalt mixture based on noise reduction and pavement performance. Construction and Building Materials, 389, 131551. https://doi.org/10.1016/j.conbuildmat.2023.131551

    Article  Google Scholar 

  127. Luo, Y., Han, S., Wu, C., Zheng, Y., & Men, C. (2023). Laboratory evaluation on performance of polyurethane porous elastic mixture. Construction and Building Materials, 397, 132399. https://doi.org/10.1016/j.conbuildmat.2023.132399

    Article  Google Scholar 

  128. Ghafori Fard, Z., Khabiri, M. M., & Kornél Tamás, A. (2023). Investigation of porous asphalt surface parameters used in traditional texture passages. IJTE, 10(4), 1327.

    Google Scholar 

  129. Li, L., Shen, X., Liu, J., Li, W., Zhong, C., & Zhou, X. (2023). The feasibility analysis of recycled aggregates from construction and demolition waste for permeable pavement. KSCE Journal of Civil Engineering, 27, 535–550. https://doi.org/10.1007/s12205-022-0767-0

    Article  Google Scholar 

  130. Li, B., Kong, Y., Zhu, X., Wei, D., & Han, J. (2023). Prediction model on permeability coefficient of porous asphalt concrete under repeated clogging based on void characteristic parameters. Journal of Materials in Civil Engineering. https://doi.org/10.1061/JMCEE7.MTENG-14924

    Article  Google Scholar 

  131. Oral, G., & Cetin, A. (2023). The performance evaluation of porous asphalt mixtures reinforced by fibers. International Journal of Civil Engineering, 21, 445–459. https://doi.org/10.1007/s40999-022-00782-5

    Article  Google Scholar 

  132. Latif, A. A., Putrajaya, R., & Ing, D. S. (2023). A review of porous concrete pavement: compressive strength and clogging investigation. Journal of Advanced Research in Applied Sciences and Engineering Technology, 29, 128–138. https://doi.org/10.37934/araset.29.3.128138

    Article  Google Scholar 

  133. Muhammed, A. J., Qasim, Z. I., & AL-Rubaee, R. H. (2023) The effect of different aggregate gradations on permeability of open-graded asphalt concrete, In: 2023: p. 080007. https://doi.org/10.1063/5.0150368.

  134. Zhang, Z., Lu, D. X., Qiao, Y., & Giustozzi, F. (2023). Modelling the hydraulic performance of open graded asphalt using the discrete element method and computational fluid dynamics. J Hydrol (Amst), 621, 129612. https://doi.org/10.1016/j.jhydrol.2023.129612

    Article  Google Scholar 

  135. Martin, W. D., Putman, B. J., & Kaye, N. B. (2013). Using image analysis to measure the porosity distribution of a porous pavement. Construction and Building Materials, 48, 210–217. https://doi.org/10.1016/j.conbuildmat.2013.06.093

    Article  Google Scholar 

  136. Hu, J., Qian, Z., Liu, P., Wang, D., & Oeser, M. (2020). Investigation on the permeability of porous asphalt concrete based on microstructure analysis. International Journal of Pavement Engineering, 21, 1683–1693. https://doi.org/10.1080/10298436.2018.1563785

    Article  Google Scholar 

  137. Alber, S., Ressel, W., Liu, P., Hu, J., Wang, D., Oeser, M., Uribe, D., & Steeb, H. (2018). Investigation of microstructure characteristics of porous asphalt with relevance to acoustic pavement performance. International Journal of Transportation Science and Technology, 7, 199–207. https://doi.org/10.1016/j.ijtst.2018.06.001

    Article  Google Scholar 

  138. Kusumawardani, D. M., & Wong, Y. D. (2023). Assessment of packing structure of porous asphalt mixture (PAM) based on image-based analysis. International Journal of Pavement Research and Technology, 16, 1158–1167. https://doi.org/10.1007/s42947-022-00187-6

    Article  Google Scholar 

  139. Król, J. B., Khan, R., & Collop, A. C. (2018). The study of the effect of internal structure on permeability of porous asphalt. Road Materials and Pavement Design, 19, 935–951. https://doi.org/10.1080/14680629.2017.1283355

    Article  Google Scholar 

  140. Gao, L., Wang, Z., Xie, J., Wang, Z., & Li, H. (2020). Study on the sound absorption coefficient model for porous asphalt pavements based on a CT scanning technique. Construction and Building Materials, 230, 117019. https://doi.org/10.1016/j.conbuildmat.2019.117019

    Article  Google Scholar 

  141. Chu, L., & Fwa, T. F. (2019). Functional sustainability of single- and double-layer porous asphalt pavements. Construction and Building Materials, 197, 436–443. https://doi.org/10.1016/j.conbuildmat.2018.11.162

    Article  Google Scholar 

  142. Chu, L., Fwa, T. F., & Tan, K. H. (2017). Evaluation of wearing course mix designs on sound absorption improvement of porous asphalt pavement. Construction and Building Materials, 141, 402–409. https://doi.org/10.1016/j.conbuildmat.2017.03.027

    Article  Google Scholar 

  143. Peng, B., Han, S., Han, X., & Zhang, H. (2022). Laboratory and field evaluation of noise characteristics of porous asphalt pavement. International Journal of Pavement Engineering, 23, 3357–3370. https://doi.org/10.1080/10298436.2021.1893319

    Article  Google Scholar 

  144. Wang, H., Ding, Y., Liao, G., & Ai, C. (2016). Modeling and optimization of acoustic absorption for porous asphalt concrete. Journal of Engineering Mechanics. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001037

    Article  Google Scholar 

  145. Chen, D., Ling, C., Wang, T., Su, Q., & Ye, A. (2018). Prediction of tire-pavement noise of porous asphalt mixture based on mixture surface texture level and distributions. Construction and Building Materials, 173, 801–810. https://doi.org/10.1016/j.conbuildmat.2018.04.062

    Article  Google Scholar 

  146. Cong, L., Zhang, Y., Xiao, F., & Wei, Q. (2016). Laboratory and field investigations of permeability and surface temperature of asphalt pavement by infrared thermal method. Construction and Building Materials, 113, 442–448. https://doi.org/10.1016/j.conbuildmat.2016.03.078

    Article  Google Scholar 

  147. Higashiyama, H., Sano, M., Nakanishi, F., Takahashi, O., & Tsukuma, S. (2016). Field measurements of road surface temperature of several asphalt pavements with temperature rise reducing function. Case Studies in Construction Materials, 4, 73–80. https://doi.org/10.1016/j.cscm.2016.01.001

    Article  Google Scholar 

  148. Stempihar, J. J., Pourshams-Manzouri, T., Kaloush, K. E., & Rodezno, M. C. (2012). Porous asphalt pavement temperature effects for urban heat island analysis. Transportation Research Record: Journal of the Transportation Research Board, 2293, 123–130. https://doi.org/10.3141/2293-15

    Article  Google Scholar 

  149. Hassn, A., Aboufoul, M., Wu, Y., Dawson, A., & Garcia, A. (2016). Effect of air voids content on thermal properties of asphalt mixtures. Construction and Building Materials, 115, 327–335. https://doi.org/10.1016/j.conbuildmat.2016.03.106

    Article  Google Scholar 

  150. Chu, L., He, L., & Fwa, T. F. (2020). Determination of thermal conductivity of asphalt paving mixtures using finite element method. Construction and Building Materials, 243, 118250. https://doi.org/10.1016/j.conbuildmat.2020.118250

    Article  Google Scholar 

  151. Wu, H., Sun, B., Li, Z., & Yu, J. (2018). Characterizing thermal behaviors of various pavement materials and their thermal impacts on ambient environment. Journal of Cleaner Production, 172, 1358–1367. https://doi.org/10.1016/j.jclepro.2017.10.182

    Article  Google Scholar 

  152. Toktorbai, A., Katsuchi, H., Kim, H., Yamada, H., & Ijima, Y. (2021). Study on thermal parameters of asphalt concrete for countermeasures against high surface temperature of pavement in tunnel. Road Materials and Pavement Design, 22, 954–968. https://doi.org/10.1080/14680629.2019.1651757

    Article  Google Scholar 

  153. Nwakaire, C. M., Yap, S. P., Onn, C. C., Yuen, C. W., & Moosavi, S. M. H. (2022). Utilisation of recycled concrete aggregates for sustainable porous asphalt pavements. The Baltic Journal of Road and Bridge Engineering, 17, 117–142. https://doi.org/10.7250/bjrbe.2022-17.554

    Article  Google Scholar 

  154. Hu, M., Li, L., & Peng, F. (2019). Laboratory investigation of OGFC-5 porous asphalt ultra-thin wearing course. Construction and Building Materials, 219, 101–110. https://doi.org/10.1016/j.conbuildmat.2019.04.205

    Article  Google Scholar 

  155. Ciriminna, D., Ferreri, G. B., Noto, L. V., & Celauro, C. (2022). Numerical comparison of the hydrological response of different permeable pavements in urban area. Sustainability, 14, 5704. https://doi.org/10.3390/su14095704

    Article  Google Scholar 

  156. Suman, S. K., & Kumar, R. (2022). Hydraulic Design of Reservoir in Permeable Pavement for Mitigating Urban Stormwater. In R. Jha & V. P. Singh (Eds.), River Hydraulics: Hydraulics, Water Resources and Coastal Engineering (pp. 1–11). Cham: Springer.

    Google Scholar 

  157. Chen, X., Wang, H., Li, C., Zhang, W., & Xu, G. (2022). Computational investigation on surface water distribution and permeability of porous asphalt pavement. International Journal of Pavement Engineering, 23, 1226–1238. https://doi.org/10.1080/10298436.2020.1797734

    Article  Google Scholar 

  158. Zhao, L., Zhang, T., Li, J., Zhang, L., & Feng, P. (2023). Numerical simulation study of urban hydrological effects under low impact development with a physical experimental basis. J Hydrol (Amst), 618, 129191. https://doi.org/10.1016/j.jhydrol.2023.129191

    Article  Google Scholar 

  159. Yang, W., Brüggemann, K., Seguya, K. D., Ahmed, E., Kaeseberg, T., Dai, H., Hua, P., Zhang, J., & Krebs, P. (2020). Measuring performance of low impact development practices for the surface runoff management. Environmental Science and Ecotechnology, 1, 100010. https://doi.org/10.1016/j.ese.2020.100010

    Article  Google Scholar 

  160. Abdeljaber, A., Adghim, M., Abdallah, M., Ghanima, R., & Aljassem, F. (2022). Comparative performance and cost-integrated life cycle assessment of low impact development controls for sustainable stormwater management. Environmental Impact Assessment Review, 95, 106805. https://doi.org/10.1016/j.eiar.2022.106805

    Article  Google Scholar 

  161. Antunes, L. N., Ghisi, E., & Souza, J. C. (2022). Stormwater harvested from a permeable pavement for use in the fire extinguishing system and non-potable uses of a building: A case study. Urban Water Journal, 19, 433–440. https://doi.org/10.1080/1573062X.2021.2016869

    Article  Google Scholar 

  162. Chen, J., Liu, Y., Gitau, M. W., Engel, B. A., Flanagan, D. C., & Harbor, J. M. (2019). Evaluation of the effectiveness of green infrastructure on hydrology and water quality in a combined sewer overflow community. Science of The Total Environment, 665, 69–79. https://doi.org/10.1016/j.scitotenv.2019.01.416

    Article  Google Scholar 

  163. Mansor, S., Haron, S., Joohari, M. I., Razali, M., & Ramli, R. (2021). The effect of utilizing fly ash and bottom ash as a replacement of mineral filler in porous asphalt mixtures. IOP Conf Ser Mater Sci Eng, 1144, 012086. https://doi.org/10.1088/1757-899X/1144/1/012086

    Article  Google Scholar 

  164. Ding, Y., & Wang, H. (2018). Evaluation of hydroplaning risk on permeable friction course using tire–water–pavement interaction model. Transportation Research Record: Journal of the Transportation Research Board, 2672, 408–417. https://doi.org/10.1177/0361198118781392

    Article  Google Scholar 

  165. Afonso, M. L., Dinis-Almeida, M., & Fael, C. S. (2019). Characterization of the skid resistance and mean texture depth in a permeable asphalt pavement. IOP Conference Series: Materials Science and Engineerin, 471, 022029. https://doi.org/10.1088/1757-899X/471/2/022029

    Article  Google Scholar 

  166. Nataadmadja, A. D., & Purnama, A. C. (2023) Improving rainwater quality by using porous asphalt with natural adsorbents, In: p. 050004. https://doi.org/10.1063/5.0110896.

  167. Hu, X., Wang, X., Zheng, N., Li, Q., & Shi, J. (2021). Experimental investigation of moisture sensitivity and damage evolution of porous asphalt mixtures. Materials, 14, 7151. https://doi.org/10.3390/ma14237151

    Article  Google Scholar 

  168. Senior-Arrieta, V., & Graciano, C. (2021). A review of design, construction, and performance of permeable asphalt mixes in rainy countries: Case of Colombia. International Journal of Pavement Research and Technology, 14, 334–347. https://doi.org/10.1007/s42947-020-0023-2

    Article  Google Scholar 

  169. Zhu, Y., Li, H., Yang, B., Zhang, X., Mahmud, S., Zhang, X., Yu, B., & Zhu, Y. (2021). Permeable pavement design framework for urban stormwater management considering multiple criteria and uncertainty. Journal of Cleaner Production, 293, 126114. https://doi.org/10.1016/j.jclepro.2021.126114

    Article  Google Scholar 

  170. Selbig, W. R., Buer, N., & Danz, M. E. (2019). Stormwater-quality performance of lined permeable pavement systems. Journal of Environmental Management, 251, 109510. https://doi.org/10.1016/j.jenvman.2019.109510

    Article  Google Scholar 

  171. Kuruppu, U., Rahman, A., & Rahman, M. A. (2019). Permeable pavement as a stormwater best management practice: A review and discussion. Environment and Earth Science, 78, 327. https://doi.org/10.1007/s12665-019-8312-2

    Article  Google Scholar 

  172. Luo, H., Guan, L., Jing, Z., Zhang, Z., Hu, X., Tao, M., & Wang, Y. (2020). Influence of filter layer positions and hydraulic retention time on removal of nitrogen and phosphorus by porous asphalt pavement. Water Science and Technology, 81, 445–455. https://doi.org/10.2166/wst.2020.110

    Article  Google Scholar 

  173. Chen, C.-F., Lin, J.-W., & Lin, J.-Y. (2022). Hydrological Cycle Performance at a Permeable Pavement Site and a Raingarden Site in a Subtropical Region. Land (Basel), 11, 951. https://doi.org/10.3390/land11060951

    Article  Google Scholar 

  174. Xu, J., Dai, J., Wu, X., Wu, S., Zhang, Y., Wang, F., Gao, A., & Tan, Y. (2023). Urban rainwater utilization: A review of management modes and harvesting systems. Frontiers in Environmental Science. https://doi.org/10.3389/fenvs.2023.1025665

    Article  Google Scholar 

  175. Wang, J., Zhou, X., Wang, S., Chen, L., & Shen, Z. (2023). Simulation and comprehensive evaluation of the multidimensional environmental benefits of sponge cities. Water (Basel), 15, 2590. https://doi.org/10.3390/w15142590

    Article  Google Scholar 

  176. Zaman, S., Al Hasan, M. A., & Mutsuddy, R. (2023) Effect of fine aggregates in properties of porous concrete with cupola furnace slag, In: p. 020009. https://doi.org/10.1063/5.0129860.

  177. Liu, Q., & Cao, D. (2009). Research on material composition and performance of porous asphalt pavement. Journal of Materials in Civil Engineering, 21, 135–140. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:4(135)

    Article  Google Scholar 

  178. Cheng, Y.-Y., Lo, S.-L., Ho, C.-C., Lin, J.-Y., & Yu, S. (2019). Field testing of porous pavement performance on runoff and temperature control in Taipei City. Water (Basel), 11, 2635. https://doi.org/10.3390/w11122635

    Article  Google Scholar 

  179. Masri, K. A., Jaya, R. P., Choo, C. S., & Wan Ibrahim, M. H. (2022). Prediction of rutting resistance of porous asphalt mixture incorporating nanosilica. Risk Reliability and Sustainable Remediation in the Field of Civil and Environmental Engineering (pp. 477–486). Elsevier.

    Chapter  Google Scholar 

  180. Haryati, Y., Norhidayah, A. H., Nordiana, M., Juraidah, A., Hayati, A. H. N., Ramadhansyah, P. J., Azman, M. K., & Haryati, A. (2019). Stability and rutting resistance of porous asphalt mixture incorporating coconut shells and fibres. IOP Conf Ser Earth Environ Sci, 244, 012043. https://doi.org/10.1088/1755-1315/244/1/012043

    Article  Google Scholar 

  181. Wang, X., Gu, X., Ni, F., Deng, H., & Dong, Q. (2018). Rutting resistance of porous asphalt mixture under coupled conditions of high temperature and rainfall. Construction and Building Materials, 174, 293–301. https://doi.org/10.1016/j.conbuildmat.2018.04.104

    Article  Google Scholar 

  182. Simms, R., Hernando, D., & Roque, R. (2020). A new paradigm to explain the development of instability rutting in asphalt pavements. Road Materials and Pavement Design, 21, 1815–1828. https://doi.org/10.1080/14680629.2019.1568286

    Article  Google Scholar 

  183. Cai, X., Wang, D., Huang, W., Yu, J., & Wan, C. (2017). Evaluation of rutting performance of asphalt mixture with driving wheel pavement analyzer. Advances in Materials Science and Engineering, 2017, 1–10. https://doi.org/10.1155/2017/6301914

    Article  Google Scholar 

  184. Khan, S., Nagabhushana, M. N., Tiwari, D., & Jain, P. K. (2013). Rutting in flexible pavement: an approach of evaluation with accelerated pavement testing facility. Procedia - Social and Behavioral Sciences, 104, 149–157. https://doi.org/10.1016/j.sbspro.2013.11.107

    Article  Google Scholar 

  185. Gong, Z., Zhang, L., Wu, J., Xiu, Z., Wang, L., & Miao, Y. (2022). Review of regulation techniques of asphalt pavement high temperature for climate change adaptation. Journal of Infrastructure Preservation and Resilience, 3, 9. https://doi.org/10.1186/s43065-022-00054-5

    Article  Google Scholar 

  186. Rahman Farooqi, Z., Sabir, M., Zeeshan, N., Murtaza, G., Mahroz Hussain, M., & Usman Ghani, M. (2020). Vehicular Noise Pollution ts Environmental Implications and Strategic Control. In E. Sezgin (Ed.), Autonomous Vehicle and Smart Traffic. Cham: IntechOpen.

    Google Scholar 

  187. Hahad, O., Bayo Jimenez, M. T., Kuntic, M., Frenis, K., Steven, S., Daiber, A., & Münzel, T. (2022). Cerebral consequences of environmental noise exposure. Environment International, 165, 107306. https://doi.org/10.1016/j.envint.2022.107306

    Article  Google Scholar 

  188. Yang, Y., Feng, Y., Easa, S. M., Yang, X., Liu, J., & Lin, W. (2021). Sound effects on physiological state and behavior of drivers in a highway tunnel. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2021.693005

    Article  Google Scholar 

  189. Bozkurt, T. S., & Karakaş, A. S. (2022). Investigation of asphalt pavement to improve environmental noise and water sustainability. Sustainability, 14, 14901. https://doi.org/10.3390/su142214901

    Article  Google Scholar 

  190. Xu, L., Ni, H., Zhang, Y., Sun, D., Zheng, Y., & Hu, M. (2022). Porous asphalt mixture use asphalt rubber binders: Preparation and noise reduction evaluation. Journal of Cleaner Production, 376, 134119. https://doi.org/10.1016/j.jclepro.2022.134119

    Article  Google Scholar 

  191. Mahmud, M. Z. H., Hassan, N. A., Hainin, M. R., Ismail, C. R., Jaya, R. P., Warid, M. N. M., Yaacob, H., & Mashros, N. (2021). Characterisation of microstructural and sound absorption properties of porous asphalt subjected to progressive clogging. Construction and Building Materials, 283, 122654. https://doi.org/10.1016/j.conbuildmat.2021.122654

    Article  Google Scholar 

  192. Li, T. (2018). Influencing parameters on tire-pavement interaction noise: review, experiments and design considerations. Designs (Basel), 2, 38. https://doi.org/10.3390/designs2040038

    Article  Google Scholar 

  193. Bichajło, L., & Kołodziej, K. (2018). Porous asphalt pavement for traffic noise reduction and pavement dewatering – the pollution problem. E3S Web of Conferences, 45, 00114. https://doi.org/10.1051/e3sconf/20184500114

    Article  Google Scholar 

  194. Xie, J., Zhu, Y., & Wang, Z. (2022). Research on the sound absorption performance of porous asphalt concrete with different air voids based on the finite element models. Applied Sciences, 12, 11050. https://doi.org/10.3390/app122111050

    Article  Google Scholar 

  195. Mun, S. (2010). Sound absorption characteristics of porous asphalt concrete pavements. Canadian Journal of Civil Engineering, 37, 273–278. https://doi.org/10.1139/L09-142

    Article  Google Scholar 

  196. Li, X., Gao, J., Du, H., Jia, J., Zhao, X., & Ling, T. (2022). Relationship between the void and sound absorption characteristics of epoxy porous asphalt mixture based on CT. Coatings, 12, 328. https://doi.org/10.3390/coatings12030328

    Article  Google Scholar 

  197. Ling, S., Yu, F., Sun, D., Sun, G., & Xu, L. (2021). A comprehensive review of tire-pavement noise: Generation mechanism, measurement methods, and quiet asphalt pavement. Journal of Cleaner Production, 287, 125056. https://doi.org/10.1016/j.jclepro.2020.125056

    Article  Google Scholar 

  198. Carpio, M., González, Á., González, M., & Verichev, K. (2020). Influence of pavements on the urban heat island phenomenon: A scientific evolution analysis. Energy Build, 226, 110379. https://doi.org/10.1016/j.enbuild.2020.110379

    Article  Google Scholar 

  199. Kousis, I., & Pisello, A. L. (2023). Evaluating the performance of cool pavements for urban heat island mitigation under realistic conditions: A systematic review and meta-analysis. Urban Clim, 49, 101470. https://doi.org/10.1016/j.uclim.2023.101470

    Article  Google Scholar 

  200. Vujovic, S., Haddad, B., Karaky, H., Sebaibi, N., & Boutouil, M. (2021). Urban heat island: causes consequences, and mitigation measures with emphasis on reflective and permeable pavements. CivilEng, 2, 459–484. https://doi.org/10.3390/civileng2020026

    Article  Google Scholar 

  201. Haddad, B., Karaky, H., Boutouil, M., Boudart, B., & Sebaibi, N. (2023). Investigation properties of pervious and water-retaining recycled concrete to mitigate urban heat island phenomena. Sustainability, 15, 5384. https://doi.org/10.3390/su15065384

    Article  Google Scholar 

  202. Mun-soo, N., Woo-bin, B., Hee-man, K., Yong-gil, K., & Sang-rae, K. (2021). Quantitative evaluation of the mitigation effect of low-impact development pavement materials on urban heat island and tropical night phenomena. Water Science and Technology, 83, 2452–2462. https://doi.org/10.2166/wst.2021.118

    Article  Google Scholar 

  203. Kubilay, A., Strebel, D., Derome, D., & Carmeliet, J. (2021). Mitigation measures for urban heat island and their impact on pedestrian thermal comfort. Journal of Physics: Conference Series, 2069, 012058. https://doi.org/10.1088/1742-6596/2069/1/012058

    Article  Google Scholar 

  204. Pan, F., Pei, J., Zhang, G., Wen, Y., Zhang, J., & Li, R. (2022). Building the cooling roads with high thermal conductivity pavements to relieve urban heat island effect. Construction and Building Materials, 346, 128276. https://doi.org/10.1016/j.conbuildmat.2022.128276

    Article  Google Scholar 

  205. Wang, Z., Xie, Y., Mu, M., Feng, L., Xie, N., & Cui, N. (2022). Materials to mitigate the urban heat island effect for cool pavement: a brief review. Buildings, 12, 1221. https://doi.org/10.3390/buildings12081221

    Article  Google Scholar 

  206. Li, H., Harvey, J., & Ge, Z. (2014). Experimental investigation on evaporation rate for enhancing evaporative cooling effect of permeable pavement materials. Construction and Building Materials, 65, 367–375. https://doi.org/10.1016/j.conbuildmat.2014.05.004

    Article  Google Scholar 

  207. Mizwar, I. K., Bin Napiah, M., & Sutanto, M. H. (2021). Pavements for mitigating urban heat island effects. Eco-Efficient Materials for Reducing Cooling Needs in Buildings and Construction (pp. 61–76). Elsevier.

    Chapter  Google Scholar 

  208. Nwakaire, C. M., Onn, C. C., Yap, S. P., Yuen, C. W., & Onodagu, P. D. (2020). Urban heat island studies with emphasis on urban pavements: A review. Sustainable Cities and Society, 63, 102476. https://doi.org/10.1016/j.scs.2020.102476

    Article  Google Scholar 

  209. Yang, H., Yang, K., Miao, Y., Wang, L., & Ye, C. (2020). Comparison of potential contribution of typical pavement materials to heat island effect. Sustainability, 12, 4752. https://doi.org/10.3390/su12114752

    Article  Google Scholar 

  210. Abdul Hassan, N., Mohamed Abdullah, N. A., Mohd Shukry, N. A., Mahmud, M. Z. H., Mohd Yunus, N. Z., Putrajaya, R., Hainin, M. R., & Yaacob, H. (2015). Laboratory evaluation on the effect of clogging on permeability of porous asphalt mixtures. Jurnal Teknologi. https://doi.org/10.11113/jt.v76.5846

    Article  Google Scholar 

  211. Ma, Y., Chen, X., Geng, Y., & Zhang, X. (2020). Effect of clogging on the permeability of porous asphalt pavement. Advances in Materials Science and Engineering, 2020, 1–9. https://doi.org/10.1155/2020/4851291

    Article  Google Scholar 

  212. Abreu, N., & Gonçalves, M. (2020). Clogging of permeable pavements: case study. IOP Conference Series: Earth and Environmental Science, 503, 012067. https://doi.org/10.1088/1755-1315/503/1/012067

    Article  Google Scholar 

  213. Chen, L.-M., Chen, J.-W., Lecher, T., Chen, T.-H., & Davidson, P. (2020). Assessment of clogging of permeable pavements by measuring change in permeability. Science of The Total Environment, 749, 141352. https://doi.org/10.1016/j.scitotenv.2020.141352

    Article  Google Scholar 

  214. Sui, X., Wang, S., Leng, Z., Yang, B., & Lu, G. (2023). Clogging evaluation of porous asphalt pavement using ground-penetrating radar. Measurement, 216, 112939. https://doi.org/10.1016/j.measurement.2023.112939

    Article  Google Scholar 

  215. Mullaney, J., & Lucke, T. (2014). Practical review of pervious pavement designs. Clean: Soil, Air, Water, 42, 111–124. https://doi.org/10.1002/clen.201300118

    Article  Google Scholar 

  216. Cheng, Z., Zheng, S., Liang, N., Li, X., & Li, L. (2023). Influence of complex service factors on ravelling resistance performance for porous asphalt pavements. Buildings, 13, 323. https://doi.org/10.3390/buildings13020323

    Article  Google Scholar 

  217. Din, I. M., Mir, M. S., & Farooq, M. A. (2020). Effect of freeze-thaw cycles on the properties of asphalt pavements in cold regions: a review. Transportation Research Procedia, 48, 3634–3641. https://doi.org/10.1016/j.trpro.2020.08.087

    Article  Google Scholar 

  218. Xu, H., Shi, H., Zhang, H., Li, H., Leng, Z., & Tan, Y. (2020). Evolution of dynamic flow behavior in asphalt mixtures exposed to freeze-thaw cycles. Construction and Building Materials, 255, 119320. https://doi.org/10.1016/j.conbuildmat.2020.119320

    Article  Google Scholar 

  219. Wang, W., Wang, L., Xiong, H., & Luo, R. (2019). A review and perspective for research on moisture damage in asphalt pavement induced by dynamic pore water pressure. Construction and Building Materials, 204, 631–642. https://doi.org/10.1016/j.conbuildmat.2019.01.167

    Article  Google Scholar 

  220. Zhang, K., & Kevern, J. (2021). Review of porous asphalt pavements in cold regions: The state of practice and case study repository in design, construction, and maintenance. Journal of Infrastructure Preservation and Resilience, 2, 4. https://doi.org/10.1186/s43065-021-00017-2

    Article  Google Scholar 

  221. Kamboozia, N., Mousavi Rad, S., & Saed, S. A. (2022). Laboratory investigation of the effect of nano-ZnO on the fracture and rutting resistance of porous asphalt mixture under the aging condition and freeze-thaw cycle. Journal of Materials in Civil Engineering. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004187

    Article  Google Scholar 

  222. Chai, C., Cheng, Y.-C., Zhang, Y., Chen, Y., & Zhu, B. (2020). Experimental study on the performance decay of permeable asphalt mixture in seasonally frozen regions under freeze-thaw cycles. Sustainability, 12, 2966. https://doi.org/10.3390/su12072966

    Article  Google Scholar 

  223. Azadgoleh, M. A., Mohammadi, M. M., Ghodrati, A., Sharifi, S. S., Palizban, S. M. M., Ahmadi, A., Vahidi, E., & Ayar, P. (2022). Characterization of contaminant leaching from asphalt pavements: A critical review of measurement methods, reclaimed asphalt pavement, porous asphalt, and waste-modified asphalt mixtures. Water Research, 219, 118584. https://doi.org/10.1016/j.watres.2022.118584

    Article  Google Scholar 

  224. Charlesworth, S., Beddow, J., & Nnadi, E. (2017). The fate of pollutants in porous asphalt pavements, laboratory experiments to investigate their potential to impact environmental health. International Journal of Environmental Research and Public Health, 14, 666. https://doi.org/10.3390/ijerph14060666

    Article  Google Scholar 

  225. Hashim, T. M., Ali, A. H., Al-Khafaji, R., Al-Khazraji, A. A., & Zahra Dharb, F. R. A. (2021). A comparison study between porous and conventional asphalt concrete mixtures. IOP Conference Series: Materials Science and Engineering, 1090, 012041. https://doi.org/10.1088/1757-899X/1090/1/012041

    Article  Google Scholar 

  226. Li, X., Shen, J., Ling, T., & Yuan, F. (2022). Fatigue properties of aged porous asphalt mixtures with an epoxy asphalt binder. Journal of Materials in Civil Engineering. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004130

    Article  Google Scholar 

  227. Mousavi Rad, S., Kamboozia, N., Anupam, K., & Saed, S. A. (2022). Experimental evaluation of the fatigue performance and self-healing behavior of nanomodified porous asphalt mixtures containing RAP materials under the aging condition and freeze-thaw cycle. Journal of Materials in Civil Engineering. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004488

    Article  Google Scholar 

  228. Lu, Q., Xin, C., Alamri, M., & Alharthai, M. (2021). Development of porous asphalt mixture with bio-based epoxy asphalt. Journal of Cleaner Production, 317, 128404. https://doi.org/10.1016/j.jclepro.2021.128404

    Article  Google Scholar 

  229. Yuan, G., Hao, P., Li, D., Pan, J., & Dong, S. (2020). Optimization design and verification of large stone porous asphalt mixes gradation using compressible packing model. Construction and Building Materials, 230, 116903. https://doi.org/10.1016/j.conbuildmat.2019.116903

    Article  Google Scholar 

  230. Pradoto, R., Puri, E., Hadinata, T., & Rahman, Q. D. (2020). Improving strength of porous asphalt: A nano material experimental approach. IOP Conf Ser Mater Sci Eng, 849, 012044. https://doi.org/10.1088/1757-899X/849/1/012044

    Article  Google Scholar 

Download references

Acknowledgements

I would like to express my sincere gratitude to Professor Aniket Kataware for his invaluable guidance and support throughout the research process. I am also thankful to IIT Dharwad for providing essential institutional assistance for carrying out my research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniket V. Kataware.

Ethics declarations

Conflict of interest

As the author of the review article titled " Review on Porous Asphalt Pavements: A Comprehensive Resolution for Stormwater Management and Applications in Current Built Environment", I want to be transparent about any potential conflicts of interest that could affect the impartiality of the content presented in this manuscript. Financial Interests: I did not receive any financial support from organizations or entities that could benefit from the article's findings. Employment Affiliation: I am a Ph.D. candidate at the Indian Institute of Technology (IIT) Dharwad. While I have received academic guidance and resources from the institution, my affiliation does not impact the objective presentation of the literature review. Collaboration: The research for this article was conducted independently, without collaboration that could lead to conflicts of interest. Personal Relationships: There are no personal relationships that could influence the content. Professional Competing Interests: I have no professional interests that might compromise the objectivity of the literature review. This Declaration of Interest Statement accurately represents any potential conflicts of interest related to the publication, and I have followed the guidelines set by the International Journal of Pavement Research and Technology. The article is based on unbiased research and a fair presentation of the existing literature on porous asphalt pavements.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darshan, N., Kataware, A.V. Review on Porous Asphalt Pavements: A Comprehensive Resolution for Stormwater Management and Applications in Current Built Environment. Int. J. Pavement Res. Technol. (2024). https://doi.org/10.1007/s42947-024-00444-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42947-024-00444-w

Keywords

Navigation