Skip to main content
Log in

Impact of Testing and Specimen Configurations on Monotonic High-Temperature Indirect Tensile (High-IDT) Rutting Assessment Test

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

Recently, more attention has been paid to implementing the Indirect Tension Test (IDT) conducted at high-testing temperature (i.e., High-IDT) and IDT strength (IDTstrength) indicator to assess asphalt mix resistance to rutting. However, although it is a cheaper, more accessible, simpler, quicker, and repeatable test, no standardized testing protocol is yet developed. Therefore, this study aimed to identify the best testing and specimen configurations to conduct the High-IDT to pave the way for developing a testing protocol, which would advance its implementation to be part of the balanced mix design.

The impact of four testing variables was examined, including testing temperature and loading rate, specimen thickness, and air void content. Statistical analysis was used to examine the significance of their impact on High-IDT testing results. Study findings recommend conducting the test at a fast-loading rate at any high-test temperatures. The author recommends conducting the test at a rate of 50 mm/min at a predefined testing temperature to minimize the financial investment or the training needed, which would ease the acceptance of this test for routine use. Specimen configurations also significantly affected the testing results and may provide improper rutting assessment using High-IDT. The study evaluated using correction ratios to normalize the measured IDTstrength to a target value corresponding to target specimen thickness and AV content. The ratios significantly eliminated the effect of specimen configuration on IDTstrength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. Hasan, M. M., & Tarefder, R. A. (2020). A mixture design approach for mitigating cracking issue of asphalt concrete pavement. Construction and Building Materials, 260, 119861. https://doi.org/10.1016/j.conbuildmat.2020.119861

    Article  Google Scholar 

  2. S. Buchanan, Presentation Title: Asphalt Mix ETG: Balanced Mix Design Task Force: Update of Activities, Present. Asph. Mix. Expert Task Group( ETG) Meet. (2016).

  3. Cooper, S., Mohammad, L., Kabir, S., & King, W. (2014). Balanced Asphalt Mixture Design Through Specification Modification, Transp. Res. Rec. J Transp. Res. Board., 2447, 92–100. https://doi.org/10.3141/2447-10

    Article  Google Scholar 

  4. West, R., Rodezno, C., Leiva, F., & Yin, F. (2018). Development of a framework for balanced mix design. Proj., 406, 7–20.

    Google Scholar 

  5. Newcomb, D., & Zhou, F. (2018). Balanced design of asphalt mixtures. MN/RC., 11, 2018–2022.

    Google Scholar 

  6. R. West, C. Rodenzo, F. Leiva, F. Yin, Development of a Framework for Balanced Mix Design, NCHRP Project 20–07/Task 406, 2018. http://apps.trb.org/cmsfeed/TRBNetProjectDisplay.asp?ProjectID=4324.

  7. J.S. Miller, W.Y. Bellinger, 2003 Distress Identification Manual for the Long-Term Pavement Performance Program. FHWA-RD-03–031.

  8. Majidifard, H., Rath, P., Jahangiri, B., & Buttlar, W. G. (2022). Application of Balanced Mix Design Strategies to Missouri Dense-Graded Asphalt Mixtures. Transportation Research Record: Journal of the Transportation Research Board. https://doi.org/10.1177/03611981221110219

    Article  Google Scholar 

  9. Sala, D. V., Tran, N., Yin, F., & Bowers, B. F. (2022). Evaluating impact of corrected optimum asphalt content and benchmarking cracking resistance of georgia mixtures for balanced mix design implementation. Transportation Research Record, 2676, 13–29. https://doi.org/10.1177/03611981221082547

    Article  Google Scholar 

  10. Habbouche, J., Boz, I., & Diefenderfer, S. D. (2022). Validation of performance-based specifications for surface asphalt mixtures in virginia. Transportation Research Record, 2676, 277–296. https://doi.org/10.1177/03611981211056639

    Article  Google Scholar 

  11. Boz, I., Coffey, G. P., Habbouche, J., Diefenderfer, S. D., & Ozbulut, O. E. (2022). A Critical Review of Monotonic Loading Tests to Evaluate Rutting Potential of Asphalt Mixtures. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2022.127484

    Article  Google Scholar 

  12. E.R. Brown, P.S. Kandhal, Jingna Zhang, Performance Testing for Hot Mix Asphalt. National Center for Asphalt Technology, Natl. Cent. Asph. Technol. Rep. No. NCAT 2001–05. (2001).

  13. Alkuime, H., & Kassem, E. (2020). Comprehensive evaluation of asphalt mixes rutting wheel- tracking performance assessment Tests. International Journal of Pavement Research and Technology, 13, 334–347. https://doi.org/10.1007/s42947-020-0265-z

    Article  Google Scholar 

  14. Hasan, M. M., & Tarefder, R. A. (2020). Development of rutting specifications and possible replacement of tensile strength ratio by Hamburg wheel tracking device test. International Journal of Pavement Research and Technology, 13, 376–382. https://doi.org/10.1007/s42947-020-0303-x

    Article  Google Scholar 

  15. F. Zhou, B. Crockford, J. Zhang, S. Hu, A. Epps, L. Sun, Development and Validation of an Ideal Shear Rutting Test for Asphalt Mix Design and QC/QA, J. Assoc. Asph. Paving Technol. (n.d.).

  16. Kim, K. W., Amirkhanian, S. N., Kim, H. H., Lee, M., & Doh, Y. S. (2011). A new static strength test for characterization of rutting of dense-graded asphalt mixtures. Journal of Testing and Evaluation. https://doi.org/10.1520/JTE102385

    Article  Google Scholar 

  17. Walubita, L. F., Faruk, A. N. M., Fuentes, L., Prakoso, A., Dessouky, S., Naik, B., & Nyamuhokya, T. (2019). Using the Simple Punching Shear Test (SPST) for Evaluating the HMA Shear Properties and Predicting Field Rutting Performance. Construct Build Mater, 224, 920–929. https://doi.org/10.1016/j.conbuildmat.2019.07.133

    Article  Google Scholar 

  18. National Asphalt Pavement Association, Balanced Mix Design Resource Guide, (2021).

  19. Son, S., Said, I. M., & Al-Qadi, I. L. (2019). Fracture properties of asphalt concrete under various displacement conditions and temperatures. Construct Build Mater, 222, 332–341. https://doi.org/10.1016/j.conbuildmat.2019.06.161

    Article  Google Scholar 

  20. Sobhi, S., Yousefi, A., & Behnood, A. (2020). The effects of Gilsonite and Sasobit on the mechanical properties and durability of asphalt mixtures. Construction and Building Materials, 238, 117676. https://doi.org/10.1016/j.conbuildmat.2019.117676

    Article  Google Scholar 

  21. Alkuime, H., Kassem, E., Bayomy, F. M. S., & Nielsen, R. J. (2020). Development of a New Performance Indicator to Evaluate Resistance of Asphalt Mixes to Cracking. Journal of Transportation Engineering, Part B: Pavements, 146, 04020072. https://doi.org/10.1061/jpeodx.0000224

    Article  Google Scholar 

  22. Alkuime, H., Kassem, E., Bayomy, F. M. S., & Nielsen, R. J. (2021). Evaluation and Development of Performance-Engineered Specifications for Monotonic Loading Cracking Performance Assessment Tests and Indicators. Journal of Testing and Evaluation. https://doi.org/10.1520/JTE20200590

    Article  Google Scholar 

  23. West, R. C., Van Winkle, C., Maghsoodloo, S., & Dixon, S. (2017). Relationships Between Simple Asphalt Mixture Cracking Tests Using Ndesign Specimens and Fatigue Cracking at FHWA ’ S Accelerated Loading Facility, Asph. Paving Technol. Assoc. Asph. Paving Technol. Tech. Sess., 86, 579–602. https://doi.org/10.1080/14680629.2017.1389083

    Article  Google Scholar 

  24. Kim, Y. R., & Wen, H. (2002). Fracture Energy from Indirect Tension Testing, Asph. Paving Technol. Assoc. Asph. Paving Technol. Tech. Sess., 71, 779–793.

    Google Scholar 

  25. Kim, M., Mohammad, L., & Elseifi, M. (2012). Characterization of Fracture Properties of Asphalt Mixtures as Measured by Semicircular Bend Test and Indirect Tension Test. Transportation Research Record, 2296, 115–124. https://doi.org/10.3141/2296-12

    Article  Google Scholar 

  26. Chen, X., & Huang, B. (2008). Evaluation of Moisture Damage in Hot Mix Asphalt using Simple Performance and Superpave Indirect Tensile Tests. Construction and Building Materials, 22, 1950–1962. https://doi.org/10.1016/j.conbuildmat.2007.07.014

    Article  Google Scholar 

  27. Nguyen, M. T., Lee, H. J., & Baek, J. (2013). Fatigue Analysis of Asphalt Concrete under Indirect Tensile Mode of Loading Using Crack Images. Journal of Testing and Evaluation. https://doi.org/10.1520/JTE104589

    Article  Google Scholar 

  28. Falchetto, A. C., Moon, K. H., Wang, D., Riccardi, C., & Wistuba, M. P. (2018). Comparison of low-temperature fracture and strength properties of asphalt mixture obtained from IDT and SCB under different testing configurations. Road Mater. Pavement Des., 19, 591–604. https://doi.org/10.1080/14680629.2018.1418722

    Article  Google Scholar 

  29. Alkuime, H., Tousif, F., Kassem, E., & Bayomy, F. M. S. (2020). Review and Evaluation of Intermediate Temperature Monotonic Cracking Performance Assessment Testing Standards and Indicators for Asphalt Mixes. Construction and Building Materials, 263, 120121. https://doi.org/10.1016/j.conbuildmat.2020.120121

    Article  Google Scholar 

  30. Bennert, T., Haas, E., & Wass, E. (2018). Indirect Tensile Test (IDT) to Determine Asphalt Mixture Performance Indicators during Quality Control Testing in New Jersey. Transportation Research Record, 2672, 394–403. https://doi.org/10.1177/0361198118793276

    Article  Google Scholar 

  31. D.W. Christensen, R.F. Bonaquist, 2004 NCHRP Report 530 Evaluation of Indirect Tensile Test (IDT) Procedures for Low-Temperature. Performance of Hot Mix Asphalt. https://doi.org/10.17226/13775.

  32. Roque, R., Zhang, Z., & Sankar, B. (1999). Determination of Crack Growth Rate Parameters of Asphalt Mixtures Using the Superpave IDT. Proc. Assoc. Asph. Paving Technol., 68, 404–433.

    Google Scholar 

  33. Gu, F., Chen, C., Yin, F., West, R. C., & Taylor, A. (2019). Development of a New Cracking Index for Asphalt Mixtures using Indirect Tensile Creep and Strength Test. Construction and Building Materials, 225, 465–475. https://doi.org/10.1016/j.conbuildmat.2019.07.058

    Article  Google Scholar 

  34. D.N. Richardson, S.M. Lusher, Determination of Creep Compliance and Tensile Strength of Hot-Mix Asphalt for Wearing Courses in Missouri, Missouri Dep. Transp. (2008).

  35. Faruk, A. N. M., Hu, X., Lopez, Y., & Walubita, L. F. (2014). Using the Fracture Energy Index Concept to Characterize the HMA Cracking Resistance Potential Under Monotonic Crack Testing. Int. J. Pavement Res. Technol., 7, 40–48. https://doi.org/10.6135/ijprt.org.tw/2014.7(1).40

    Article  Google Scholar 

  36. Zborowski, A., & Kaloush, K. E. (2007). Predictive Equations to Evaluate Thermal Fracture of Asphalt Rubber Mixtures. Road Mater. Pavement Des., 8, 819–833. https://doi.org/10.3166/rmpd.8.819-833

    Article  Google Scholar 

  37. F. Zhu, Developing Simple Lab Test to Evaluate HMA Resistance to Moisture, Rutting, Thermal Cracking Distress, The University of Akron, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=akron1204879659.

  38. Wen, H., & Bhusal, S. (2013). A Laboratory Study to Predict the Rutting and Fatigue Behavior of Asphalt Concrete Using the Indirect Tensile Test. Journal of Testing and Evaluation. https://doi.org/10.1520/JTE20120004

    Article  Google Scholar 

  39. Tran, N. T., & Takahashi, O. (2018). Evaluating the rutting resistance of wearing course mixtures with different fine aggregate sources using the indirect tensile strength test. Journal of Testing and Evaluation. https://doi.org/10.1520/JTE20180152

    Article  Google Scholar 

  40. Zieliński, P. (2019). Indirect tensile test as a simple method for rut resistance evaluation of asphalt mixtures-polish experience. Archives of Civil Engineering, 65, 31–44.

    Article  Google Scholar 

  41. Divandari, H. (2019). Predict of asphalt rutting potential based on idt and validation with ANN. J. Appl. Eng. Sci., 9, 131–138. https://doi.org/10.2478/jaes-2019-0018

    Article  Google Scholar 

  42. F. Yin, A. Taylor, N. Tran, NCAT Report 20–02 : Performance Testing for Quality Control and Acceptance of Balanced Mix Design, (2020). http://www.eng.auburn.edu/research/centers/ncat/files/technical-reports/rep20-02.pdf.

  43. M. Alsalihi, Quantification of the Role of The Effective Binder in the Performance of RAP – WMA Mixtures, (2020). http://hdl.handle.net/20.500.12613/4755.

  44. Bennert, T., Haas, E., Wass, E., & Berger, B. (2021). Indirect Tensile Test (IDT) to Determine Asphalt Mixture Performance Indicators during Quality Control Testing in New Jersey, in Asph. Paving Technol. Assoc. Asph. Paving Technol. Tech. Sess., 11, 363–389.

    Google Scholar 

  45. Nascimento, F. A. C., Guimarães, A. C. R., & Castro, C. D. (2021). Comparative study on permanent deformation in asphalt mixtures from indirect tensile strength testing and laboratory wheel tracking. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2021.124736

    Article  Google Scholar 

  46. D.W. Christensen, R. Bonaquist, D.P. Jack, Evaluation of Triaxial Strength as a Simple Test for Asphalt Concrete Rut Resistance, 2000.

  47. Meroni, F., Flintsch, G. W., Habbouche, J., Diefenderfer, B. K., & Giustozzi, F. (2021). Three-Level Performance Evaluation of High RAP Asphalt Surface Mixes. Construction and Building Materials, 309, 125164. https://doi.org/10.1016/j.conbuildmat.2021.125164

    Article  Google Scholar 

  48. Zieliński, P. (2022). Indirect Tensile Test as A Simple Method for Rut Resistance Evaluation of Asphalt Mixtures-Polish Experience. Road Mater. Pavement Des., 23, 112–128. https://doi.org/10.1080/14680629.2020.1820894

    Article  Google Scholar 

  49. M. Thiessen, A. Shalaby, L. Kavanagh, Strength Testing of In-Service Asphalt Pavements in Manitoba and Correlation to Rutting, in: Proc. Can. Tech. Asph. Assoc., 2000.

  50. Anderson, R. M., Christensen, D. W., & Bonaquist, R. (2003). Estimating the rutting potential of asphalt mixtures using superpave gyratory compaction properties and indirect tensile strength Paving Technol. Assoc. Asph. Paving Technol. Tech. Sess., 11, 1–26.

    Google Scholar 

  51. J.P. Zaniewski, G. Srinivasan, Evaluation of Indirect Tensile Strength to Identify Asphalt Concrete Rutting Potential, West Virginia University, 2004.

  52. Christensen, D. W., Bonaquist, R., Anderson, D. A., & Gokhale, S. (2004). Transportation research circular E-C068: indirect tension strength as a simple performance test. performance tests for asphalt mixes, transp. res. board. Natl. Acad. Washington, 22, 44–57.

    Google Scholar 

  53. T.K. Pellinen, S. Xiao, FHWA/IN/JTRP-2005/20 report: Stiffness of Hot Mix Asphalt, 2005.

  54. D.W. Christensen, R. Bonaquist, Transportation Research Circular E-C124: Using the Indirect Tensile Test to Evaluate Rut Resistance in Developing Hot-Mix Asphalt Designs. Practical Approaches to Hot-Mix Asphalt Mix Design and Production Quality Control Testing, 2007. http://onlinepubs.trb.org/onlinepubs/circulars/ec124.pdf.

  55. N.P. Khosla, K.I. Harikrishnan, Tensile Strength-a Design and Evaluation Tool for Superpave Mixtures, 2007.

  56. F. Kaseer, F. Yin, E. Arámbula-Mercado, A. Epps Martin, J.S. Daniel, S. Salari, (2018) Development of an Index to Evaluate the Cracking Potential of Asphalt Mixtures Using the Semi-Circular Bending Test Constr. Build. Mater. 167: 286–298

  57. M.K. Barry, An analysis of Impact Factors on the Illinois Flexibility Index Test (Master’s thesis), (2016).

  58. Lu, D. X., Bui, H. H., & Saleh, M. (2021). Effects of specimen size and loading conditions on the fracture behaviour of asphalt concretes in the SCB test Eng. Fracture Mechanics of Ceramics, 242, 107452. https://doi.org/10.1016/j.engfracmech.2020.107452

    Article  Google Scholar 

  59. Saha, G., & Biligiri, K. P. (2016). Fracture properties of asphalt mixtures using semi-circular bending test: A state-of-the-art review and future research. Construction and Building Materials, 105, 103–112. https://doi.org/10.1016/j.conbuildmat.2015.12.046

    Article  Google Scholar 

  60. Yousefi, A. A., Sobhi, S., Aliha, M. R. M., Pirmohammad, S., & Haghshenas, H. F. (2021). Cracking Properties of Warm Mix Asphalts Containing Reclaimed Asphalt Pavement and Recycling Agents under Different Loading Modes. Construction and Building Materials, 300, 124130. https://doi.org/10.1016/j.conbuildmat.2021.124130

    Article  Google Scholar 

  61. Jiang, J., Chen, H., & Bahia, H. U. (2022). Factors controlling pre- and post-peak behavior of asphalt mixtures containing RAP in the SCB test. Mater. Struct. Constr., 55, 1–14. https://doi.org/10.1617/s11527-022-01997-7

    Article  Google Scholar 

  62. H. Alkuime, E. Kassem, T.M. Al-rousan, R.O. Mujalli, K. Alshraiedeh, Accounting for the Effect of Air Void on Asphalt Mix Monotonic Cracking Testing Results, Journal of Testing and Evaluation. 2023.

  63. J.J. Rivera-Perez, Effect of Specimen Geometry and Test Configuration on the Fracture Process Zone for Asphalt Materials, University of Illinois at Urbana-Champaign, 2017.

  64. Rivera-Perez, J., Ozer, H., & Al-Qadi, I. L. (2018). Impact of Specimen Configuration and Characteristics on Illinois Flexibility Index. Transportation Research Record, 2672, 383–393. https://doi.org/10.1177/0361198118792114

    Article  Google Scholar 

  65. Zhao, Y., Ni, F., Zhou, L., & Jiang, J. (2017). Heterogeneous fracture simulation of asphalt mixture under scb test with cohesive crack model road mater. Pavement Des., 1, 1–12. https://doi.org/10.1080/14680629.2016.1230071

    Article  Google Scholar 

  66. A. Abbas, M.D. Nazzal, T. Quasem, M. Mansour, S.F. Husain, Crack Resistance and Durability of Ohio DOT Asphalt Mixtures Using I-FIT & IDEAL-CT : Phase 2, 2021.

  67. Harvey, J., & Tsai, B.-W. (1996). Effects of Asphalt Content and Air Void Content on Mix Fatigue and Stiffness. Transportation Research Record, 1543, 38–45.

    Article  Google Scholar 

  68. Linden, R. N., Mahoney, J., & Jackson, N. C. (1989). Effect of compaction on asphalt concrete performance. Transp. Res. Board., 11, 453.

    Google Scholar 

  69. N. Tran, P. Turner, J. Shambley, NCAT Report 16–02R: Enhanced Compaction To Improve Durability And Extend Pavement Service Life : A Literature Review, 2016.

  70. Kassem, E., Masad, E., Lytton, R., & Chowdhury, A. (2011). Influence of air voids on mechanical properties of asphalt mixtures. Road Mater. Pavement Des. https://doi.org/10.3166/RMPD.12.493-524

    Article  Google Scholar 

  71. ASTM D3549, (2011) Standard Test Method for Thickness or Height of Compacted Bituminous Paving Mixture Specimens. https://doi.org/10.1520/mnl10913m.

  72. F. Zhou, IDEAL Rutting Test, Connect. DOTs Webinar Ser. (2020). https://www.youtube.com/watch?v=u6l0ka6uf34.

  73. N.J. Salkind, Encyclopedia of research design, 2010.

  74. G. Nsengiyumva, Development of Semi-Circular Bending (SCB) Fracture Test for Bituminous Mixtures, University of Nebraska - Lincoln, 2015.

  75. ASTM D8044–15, (2015) Standard Test Method for Evaluation of Asphalt Mixture Cracking Resistance using the Semi-Circular Bend Test (SCB) at Intermediate Temperatures. 15: 10–17. https://doi.org/10.1145/3132847.3132886.

  76. ASTM D8225–19, Standard Test Method for Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature, 2019.

  77. AASHTO TP141–20, Standard Method of Test for Determining the Indirect Tensile Nflex Factor to Assess the Cracking Resistance of Asphalt Mixtures, (2020).

  78. ASTM D6931–12, Standard Test Method for Indirect Tensile ( IDT ) Strength of Bituminous Mixtures, (2012).

  79. Harnaeni, S. R., Pramesti, F. P., Budiarto, A., & Setyawan, A. (2018). The effect of temperature changes on mechanistic performance of hotmix asphalt as wearing course with different gradation types AIP Conf. Proc. https://doi.org/10.1063/1.5042946

    Article  Google Scholar 

  80. Masad, E., Jandhyala, V. K., Dasgupta, N., Somadevan, N., & Shashidhar, N. (2002). Characterization of Air Void Distribution in Asphalt Mixes using X-ray Computed Tomography. Journal of Materials in Civil Engineering, 14, 122–129. https://doi.org/10.1061/(asce)0899-1561(2002)14:2(122)

    Article  Google Scholar 

  81. Chen, J., Huang, B., & Shu, X. (2013). Air-Void Distribution Analysis of Asphalt Mixture Using Discrete Element Method. Journal of Materials in Civil Engineering, 25, 1375–1385. https://doi.org/10.1061/(asce)mt.1943-5533.0000661

    Article  Google Scholar 

  82. Kassem, E., Masad, E., Lytton, R., & Chowdhury, A. (2011). Influence of Air Voids on Mechanical Properties of Asphalt Mixtures. Int. J. Road Mater. Pavement Des., 12(3), 493–524.

    Article  Google Scholar 

Download references

Acknowledgements

This study has been supported by Hashemite University, Jordan (Grant No. 63/2020). The author gratefully acknowledges this support. Also, the author appreciates the technical help provided by Eng. Mohammad Shafiq and Eng. Mohammad Ganam at the Hashemite University, and Eng. Shaymaa AL–Dlabeeh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamza Alkuime.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkuime, H. Impact of Testing and Specimen Configurations on Monotonic High-Temperature Indirect Tensile (High-IDT) Rutting Assessment Test. Int. J. Pavement Res. Technol. (2023). https://doi.org/10.1007/s42947-023-00313-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42947-023-00313-y

Keywords

Navigation