Skip to main content
Log in

Valorization of Fluvial Sediments Treated with Hydraulic Binders and Influence of the Particle Size Distribution of the Incorporated Correctors on Their Properties

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

The large quantities of dredged sediments present a significant environmental and storage challenge, particularly when contamination levels are high. This study is focused on the valorization of dredged river sediments as road materials. Sediments studied come from the Kherrata dam and the Soummam river located in Bejaia (northern Algeria). Self-compacting materials for trench backfilling and road sub-layers are the two applications targeted. The raw sediments must first be characterized. Processing aptitude tests are carried out on sediments, this allow distinguishing them based on their characteristics. The treatments were optimized following these different experiments which were carried out according requirements for use as self-compacting materials and roads sub-layers. The fluidity of the self-compacting materials is a determining criterion, the compression strength and tensile strength are two parameters to be checked before the validation of the formulas retained for the two applications. Finally, the authorization age of the traffic on the treated layer is important. In the treatment of the two sediments, two sands with different grain size were combined with binders (cement or lime). The mechanical strength of the solidified materials is influenced by the grain size distribution of the added sands. In contrast to the low resistances obtained in lime mixtures, the cement treatment, in combination with well-graded and a spread grain size distribution sand, provides adequate strength and satisfies the regulatory requirements of the two targeted fields application, especially self-compacting materials. As a result, the appropriate formulations for each application can be selected based on the findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lafhaj, Z., Samara, M., Agostini, F., Boucard, L., Skoczylas, F., & Depelsenaire, G. (2008). Polluted river sediments from the north region of France: Treatment with Novosol® process and valorization in clay bricks. Construction & Building Materials, 22, 755–762. https://doi.org/10.1016/j.conbuildmat.2007.01.023

    Article  Google Scholar 

  2. Anger, B. (2014). Caractérisation de sédiments fins de retenues hydroélectriques en vue d’une orientation vers des filières de valorisation matière. Université de Caen, France.

    Google Scholar 

  3. Nedloussi, F., Benamara, L., & Ouhba, K. (2019). Utilisation des sédiments d’envasement de barrages comme matières premières locales dans la production des briques. Matériaux & Techniques. https://doi.org/10.1051/mattech/2019009

    Article  Google Scholar 

  4. Semcha, A. (2006). Valorisation des sédiments de dragage: Applications dans le BTP, cas du barrage de Fergoug. Université de Reims, France.

    Google Scholar 

  5. Marouf, H. (2018). Valorisation des sédiments issus du dragage du barrage de Bouhanifia et du port d’Oran. Université de Mostaganem, Algérie.

    Google Scholar 

  6. Sheikh, I. R., & Shah, M. Y. (2020). Experimental study on geocell reinforced base over dredged soil using static plate load test. International Journal of Pavement Research and Technology, 13, 286–295.

    Article  Google Scholar 

  7. Bounouara, Z., Malab, S., Mekerta, B., Benaissa, A., & Bourokba, S. A. (2020). Treatment of Dredged Sediments of Bouhanifia Dam for Their Valorization in Passive Barrier of Landfill. Geotechnical and Geological Engineering, 38, 3997–4011.

    Article  Google Scholar 

  8. Benasla, M., Hadjel, M., Benamara, L., Ouhba, K. (2016). Caractérisation de sédiments du barrage de l’Oued Fodda et leur valorisation comme un ajout artificiel dans le ciment. Matériaux & Techniques, 104(3). https://doi.org/10.1051/mattech/2016025.

  9. Gueffaf, N., Rabehi, B., & Boumchedda, K. (2020). Recycling Dam Sediments for the Elaboration of Stabilized Blocks. International Journal of Engineering Research in Africa, 50, 131–144. https://doi.org/10.4028/www.scientific.net/jera.50.131

    Article  Google Scholar 

  10. Frar, L., Belmokhtar, N., El Ayadi, H., Ammari, M., & Ben Allal, L. (2017). Valorization of port dredged sediments in cement mortars. Journal of Materials and Environmental Sciences, 8, 3347–3352.

    CAS  Google Scholar 

  11. Dang, T. A., Kamali-Bernard, S., & Abidjan Prince, W. (2012). Design of new blended cement based on marine dredged sediment. Construction and Building Materials, 41, 602–611. https://doi.org/10.1016/j.conbuildmat.2012.11.088

    Article  Google Scholar 

  12. Ez-zaki, H., & Diouri, A. (2019). Microstructural and physicomechanical properties of mortars-based dredged sediment. Asian Journal of Civil Engineering, 20, 9–19.

    Article  Google Scholar 

  13. Moghrabi, I., Ranaivomanana, H., Bendahmane, F., Amiri, O., & Levacher, D. (2019). Modelling the mechanical strength development of treated fine sediments: A statistical approach. Environmental Technology. https://doi.org/10.1080/09593330.2018.1432697

    Article  PubMed  Google Scholar 

  14. Rakshith, S., & Singh, D. N. (2017). Utilization of Dredged Sediments: Contemporary Issues. Journal of Waterway, Port, Coastal, and Ocean Engineering. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000376

    Article  Google Scholar 

  15. Scordia, P.Y. (2008). Caractérisation et valorisation de sédiments fluviaux pollués et traités dans les matériaux routiers. Thèse de Doctorat. Ecole centrale de Lille, France.

  16. Kamali, S., Bernard, F., Abriak, N. E., & Degrugilliers, P. (2008). Marine dredged sediments as new materials resource for road construction. Waste Management, 28, 919–928.

    Article  Google Scholar 

  17. Zentar, R., Dubois, V., & Abriak, N. E. (2008). Mechanical behaviour and environmental impacts of a test road built with marine dredged sediment. Resources, Conservation and Recycling, 52, 947–954.

    Article  Google Scholar 

  18. Scordia, P. Y., Lafhaj, Z., Skoczylas, F., & Mongouin, T. (2008). Characterization and valorization of polluted and treated river sediments in road. European Journal of Environmental and Civil Engineering, 7, 451–469.

    Google Scholar 

  19. Banoune, B., Melbouci, B., Rosquoët, F., & Langlet, T. (2016). Treatment of river sediments by hydraulic binders for valorization in road construction. Bulletin of Engineering Geology and the Environment, 75, 1505–1517.

    Article  CAS  Google Scholar 

  20. Dubois, V., Abriak, N. E., Zentar, R., & Ballivy, G. (2009). The use of marine sediments as a pavement base material. Waste Management, 29, 774–782.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, D. X., Wang, H. X., & Chen, W. Z. (2011). Reinforcement Mechanism of Cement/Lime-Fly Ash Treated Sediments as Road Construction Materials. Applied Mechanics and Materials., 99–100, 924–927. https://doi.org/10.4028/www.scientific.net/amm.99-100.924

    Article  ADS  Google Scholar 

  22. Banoune, B. (2016). Comportement mécanique et durabilité des matériaux routiers à différents dosages en sédiments fins. Thèse de Doctorat en cotutelle. Université A/Mira de Béjaia, Algérie et Université de Picardie J V, France.

  23. Lafhaj, Z., Duan, Z., Ali, B. H., & I., Depelsenaire, G. (2012). Valorization of Treated River Sediments in Self Compacting Materials. Waste Biomass Valor, 3, 239–247. https://doi.org/10.1007/s12649-012-9110-1

    Article  CAS  Google Scholar 

  24. Duan, Z., Lafhaj, Z., Bel Hadj Ali, I., Ducellier, S. (2011). Valorization of Stabilized River Sediments in Self Compacting Materials. In: Geo-Frontiers Congress. https://doi.org/10.1061/41165(397)139.

  25. Hugues, L. (2013). Remblayage de tranchées en matériau auto-compactant recyclé (MAC R). in : CoTITA Méditerranée, Journée du 14 novembre 2013 Nouvelles solutions économiques et performantes, (pp. 1–19), Aix-en-Provence, France.

  26. Duan, Z., Lafhaj, Z., Bel Hadj Ali, I., Ducellier, S. (2013). Valorisation des sédiments fluviaux traités en vue d’une utilisation en génie civil. Revue Paralia, 6, 5.1–5.12. doi:https://doi.org/10.5150/revue-paralia.2013.005.

  27. SNBPE, Simbéton (2014). Les matériaux autocompactant à base de ciment. Collection technique, (pp. 1–19), (pp. 1–7), Paris.

  28. Fourny, J. (2008). Mise au point de matériaux de remblai réexcavables. Revue scientifique des ISILF. 22, (pp. 67–85)

  29. Deboffe, C. (2015). Coulis autocompactant en remblais de tranchée. In : Congrès Eco-technologies pour le futur, (pp. 1–21).

  30. Belguesmia, K., Belas Belaribi, N., Amiri, O., Leklou, N., & belaribi, O. (2018). Influence of treated sediment substitution percentage on workability, strength and porosity of SCC. Journal of Materials and Engineering Structures, 5(1), 47–55.

    Google Scholar 

  31. Autocan (2002). Procédé pour remblayage de tranchées, Eurovia, (pp. 1–4).

  32. LCPC and SETRA (2007). Remblayage des tranchées et réfection des chaussées. Compléments au guide technique, CETE Normandie – Centre, (pp. 1–10).

  33. FNTP (2009). Tranchées de faible dimension: des dispositions normatives particulières. Technique et recherche, (pp. 1–7).

  34. Cimbéton (2008). Matériaux de remblayage: Les matériaux autocompactants à base de ciment. Collection technique, (pp. 1–34).

  35. LCPC and SETRA. (2000). Traitement des sols à la chaux et/ou aux liants hydrauliques-Application à la réalisation des remblais et des couches de forme. Guide technique.

    Google Scholar 

  36. LCPC and SETRA (2000a). Réalisation des remblais et des couches de forme. Guide technique. Fascicule II-Annexes techniques, 2ème édition, Paris.

  37. Maherzi, W., & Ben Abdelghani, F. (2014). Dredged Marine Raw Sediments Geotechnical Characterization for Their Reuse in Road Construction. Engineering Journal, 18, 27–37. https://doi.org/10.4186/ej.2014.18.4.27

    Article  Google Scholar 

  38. Maherzi, W., Saussaye, L., Boutouil, M. (2012). Aptitude au traitement et comportement mécanique des sédiments de dragage. In : XIIèmes Journées Nationales Génie Côtier-Génie Civil, 12–14 juin 2012, Cherbourg, (pp 1059–1066). https://doi.org/10.5150/jngcgc.2012.116-M.

  39. Rekik, B., & Boutouil, B. (2009). Geotechnical properties of dredged marine sediments treated at high water/cement ratio. Geo-Marine Letters., 29, 171–179. https://doi.org/10.1007/s00367-009-0134-x

    Article  ADS  CAS  Google Scholar 

  40. AFNOR (2005). Mélanges traités et mélanges non traités aux liants hydrauliques - Partie 53: méthode de confection par compression axiale des éprouvettes de matériaux traités aux liants hydrauliques (NF P 98–230–2), Norme expérimentale, France.

  41. AFNOR (2001). Essais relatifs aux chaussées - Détermination des caractéristiques mécaniques des matériaux traités aux liants hydrauliques - Partie 3: essai de compression diamétrale sur les matériaux traités aux liants hydrauliques et pouzzolaniques (NF P98–232–3), Norme expérimentale, France.

  42. Boutouil, M., & Saussaye, L. (2011). Influence of granulometric corrector on the properties of the sediments treated with hydraulic binders. Revue Paralia. 4, 8.1–8.11. https://doi.org/10.5150/revue-paralia.2011.008.

  43. Davidenko, T. (2015). Hydratation d’un système cimentaire binaire contenant des cendres volantes de biomasse. Université de Sherbrooke.

    Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahim Banoune.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banoune, B., Melbouci, B. Valorization of Fluvial Sediments Treated with Hydraulic Binders and Influence of the Particle Size Distribution of the Incorporated Correctors on Their Properties. Int. J. Pavement Res. Technol. 17, 470–480 (2024). https://doi.org/10.1007/s42947-022-00249-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-022-00249-9

Keywords

Navigation