Skip to main content
Log in

The Importance of Lower Truck Speeds (Longer Creep Times) on the Rutting Responses of Polymer-Modified Asphalt Binders

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

The present investigation mainly aimed at analyzing the rutting responses of polymer-modified binders with and without Polyphosphoric Acid (PPA) and by considering increased loading times in the Multiple Stress Creep and Recovery (MSCR) tests. Typical high pavement temperatures of 52, 58 and 64 °C were chosen, and these loading times varied from 1.0 to 8.0 s (1/9, 2/9, 4/9 and 8/9 s). Formulations with styrene–butadiene–styrene copolymer—SBS (AC + SBS and AC + SBS + PPA), ethylene vinyl acetate copolymer—EVA (AC + EVA and AC + EVA + PPA) and Elvaloy® terpolymer (AC + Elvaloy + PPA) were prepared, and the high PG grade of all these formulations was controlled at 76-XX. In general, the AC + Elvaloy + PPA was the best formulation to counteract rutting at longer creep times—especially 4/9 and 8/9 s—due to the presence of a strong and stable polymer network within the binder matrix. Moreover, the AC + SBS + PPA was able to deal with traffic levels similar or slightly higher than those of the AC + SBS, and this might be attributed to the hardness imparted by PPA modification and the presence of more stable polymer networks in the AC + SBS + PPA. On the other hand, the AC + EVA + PPA was found to be less rut resistant than the AC + EVA, and none of the EVA-modified binders depicted sufficient degrees of stiffness to deal with heavier and slow-moving traffic levels—mainly for temperatures of 58 °C or higher and loading times of 4/9 s or longer. Overall, the data indicate that binders with high degrees of stiffness at standardized MSCR loading conditions (1/9 s) do not necessarily perform well at longer creep times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Read, J., & Whiteoak, D. (2003). The Shell Bitumen Handbook (5th ed.). Thomas Telford Publishing.

    Google Scholar 

  2. Yildirim, Y. (2007). Polymer modified asphalt binders. Construction & Building Materials, 21(1), 66–72.

    Article  Google Scholar 

  3. Isacsson, U., & Lu, X. (1995). Testing and appraisal of polymer modified road bitumens–state of the art. Materials & Structures, 28, 139–159.

    Article  CAS  Google Scholar 

  4. Imaninasab, R. (2016). Rutting resistance and resilient modulus evaluation of polymer-modified SMA mixtures. Petroleum Science & Technology, 34(16), 1483–1489.

    Article  CAS  Google Scholar 

  5. White, G. (2017). Grading highly modified binders by multiple stress creep recovery. Road Materials & Pavement Design, 18(6), 1322–1337.

    Article  MathSciNet  CAS  Google Scholar 

  6. Polacco, G., Stastna, J., Biondi, D., & Zanzotto, L. (2006). Relation between polymer architecture and nonlinear viscoelastic behavior of modified asphalts. Current Opinion in Colloid & Interface Science, 11(4), 230–245.

    Article  CAS  Google Scholar 

  7. Fernandes, M. R. S., Forte, M. M. C., & Leite, L. F. M. (2008). Rheological evaluation of polymer-modified asphalt binders. Materials Research, 11(3), 381–386.

    Article  CAS  Google Scholar 

  8. Orange, G., Martin, J.-V., Menapace, A., Hemsley, M., & Baumgardner, G. L. (2004). Rutting and moisture resistance of asphalt mixtures containing polymer and polyphosphoric acid modified bitumen. Road Materials & Pavement Design, 5(3), 323–354.

    Article  Google Scholar 

  9. D’Angelo, J., & Dongré, R. (2009). Practical use of multiple stress creep and recovery test: Characterization of styrene-butadiene-styrene dispersion and other additives in polymer-modified asphalt binders. Transportation Research Record, 2126, 73–82.

    Article  Google Scholar 

  10. Polacco, G., Filippi, S., Merusi, F., & Stastna, J. (2015). A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility. Advances in Colloid & Interface Science, 224, 72–112.

    Article  CAS  Google Scholar 

  11. Saboo, N., & Kumar, P. (2016). Analysis of different test methods for quantifying rutting susceptibility of asphalt binders. Journal of Materials in Civil Engineering, 28(7), 04016024.

    Article  Google Scholar 

  12. Saboo, N., & Kumar, P. (2015). A study on creep and recovery behavior of asphalt binders. Construction & Building Materials, 96, 632–640.

    Article  Google Scholar 

  13. Radhakrishnan, V., Sri, M. R., & Reddy, K. S. (2018). Evaluation of asphalt binder rutting parameters. Construction & Building Materials, 173, 298–307.

    Article  CAS  Google Scholar 

  14. Domingos, M. D. I., Faxina, A. L., & Bernucci, L. L. B. (2019). Rutting behavior and rheological modeling of EVA-modified binders in the mixture and binder scales. Materials & Structures, 52, 36.

    Article  CAS  Google Scholar 

  15. Fee, D., Maldonado, R., Reinke, G., & Romagosa, H. (2010). Polyphosphoric acid modification of asphalt. Transportation Research Record, 2179, 49–57.

    Article  CAS  Google Scholar 

  16. Hafeez, I., Mian, I., Zaidi, B., Kamal, M. A., Ahmed, N., Ullah, S., Hussain, J., Riaz, K., & Hussain, S. (2013). To study the viscoelastic behavior of asphalt binders using under multi stress creep recovery test. Life Science Journal, 10(12s), 921–925.

    Google Scholar 

  17. Bessa, I. S., Takahashi, M. M., Vasconcelos, K. L., & Bernucci, L. L. B. (2019). Characterization of neat and modified asphalt binders and mixtures in relation to permanent deformation. Science & Engineering of Composite Materials, 26(1), 379–387.

    Article  CAS  Google Scholar 

  18. Delgadillo, R., Bahia, H. U., & Lakes, R. (2012). A nonlinear constitutive relationship for asphalt binders. Materials & Structures, 45(3), 457–473.

    Article  CAS  Google Scholar 

  19. Kodrat, I., Sohn, D., & Hesp, S. A. M. (1998). Comparison of polyphosphoric acid-modified asphalt binders with straight and polymer-modified materials. Transportation Research Record, 2007, 47–55.

    Google Scholar 

  20. Domingos, M. D. I., & Faxina, A. L. (2016). Susceptibility of asphalt binders to rutting: Literature review. Journal of Materials in Civil Engineering, 28(2), 04015134.

    Article  Google Scholar 

  21. Ishaq, M. A., Venturini, L., & Giustozzi, F. (2021). Correlation between rheological rutting tests on bitumen and asphalt mix flow number. International Journal of Pavement Research & Technology. https://doi.org/10.1007/s42947-021-00089-z

    Article  Google Scholar 

  22. Salim, R., Gundla, A., Zalghout, A., Underwood, B. S., & Kaloush, K. E. (2019). Relationship between asphalt binder parameters and asphalt mixture rutting. Transportation Research Record, 2673(6), 431–446.

    Article  Google Scholar 

  23. American Society for Testing and Materials, Standard Test Method for Multiple Stress Creep and Recovery (MSCR) of Asphalt Binder Using a Dynamic Shear Rheometer. D7405-15. ASTM, West Conshohocken, PA, 2015

  24. American Association of State Highway and Transportation Officials, Standard Method of Test for Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). T 350-19. AASHTO, Washington, DC, 2019

  25. Stempihar, J., Gundla, A., & Underwood, B. S. (2018). Interpreting stress sensitivity in the multiple stress creep and recovery test. Journal of Materials in Civil Engineering, 30(2), 04017283.

    Article  Google Scholar 

  26. Pereira, P. A. A., Pais, J. C., & Sousa, J. B. (2000). Modelling the effect of truck speed on permanent deformation of asphalt mixes. Road Materials & Pavement Design, 1, 197–207.

    Google Scholar 

  27. American Association of State Highway and Transportation Officials, Standard Specification for Performance-Graded Asphalt Binder Using Multiple Stress Creep Recovery (MSCR) Test. M 332-14. AASHTO, Washington, DC, 2014

  28. Salim, R., Gundla, A., Underwood, B. S., & Kaloush, K. E. (2019). Effect of MSCR percent recovery on performance of polymer modified asphalt mixtures. Transportation Research Record, 2673(5), 308–319.

    Article  Google Scholar 

  29. Golalipour, A., Bahia, H. U., & Tabatabaee, H. A. (2017). Critical considerations toward better implementation of the multiple stress creep and recovery test. Journal of Materials in Civil Engineering, 29(5), 04016295.

    Article  Google Scholar 

  30. American Association of State Highway and Transportation Officials, Standard Specification for Performance-Graded Asphalt Binder. M 320-09. AASHTO, Washington DC, USA, 2009

  31. American Society for Testing and Materials, Standard Test Method for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer. D7175-08. ASTM, West Conshohocken PA, USA, 2008

  32. American Society for Testing and Materials, Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer. D4402-12. ASTM, West Conshohocken PA, USA, 2012

  33. Kodrat, I., Sohn, D., & Hesp, S. A. M. (1998). Comparison of polyphosphoric acid–modified asphalt binders with straight and polymer-modified materials. Transportation Research Record, 2007, 47–55.

    Google Scholar 

  34. American Society for Testing and Materials, Standard Test Method for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test). D2872-12. ASTM, West Conshohocken PA, USA, 2012

  35. Mallick, R. B., & El-Korchi, T. (2013). Pavement engineering: Principles and practice (2nd ed.). CRC Press.

    Book  Google Scholar 

  36. C. Faccin, S. L. Schuster, P. O. B. Almeida Junior, P. M. Vestena, L. P. Specht, L. D. Bueno, L. F. M. Leite (35° Congresso de Pesquisa e Ensino em Transportes [in Portuguese], 2021), https://www.anpet.org.br/anais35/documentos/2021/Infraestrutura/Ligantes%20e%20Misturas%20Asf%C3%A1lticas/5_58_AC.pdf. Accessed 17 Mar 2022

  37. Shenoy, A. (2004). A comprehensive treatise of the high temperature specification parameter |G*|/(1-(1/tanδsinδ)) for performance grading of asphalts. Applied Rheology, 14(6), 303–314.

    Article  CAS  Google Scholar 

  38. Domingos, M. D. I., & Faxina, A. L. (2019). Alternative interpretation of the adequate traffic levels of modified bitumens on Superpave®: a case study with crumb rubber and polyphosphoric acid (PPA). Road Materials & Pavement Design, 20(Supl.2), S632–S646.

    Article  CAS  Google Scholar 

  39. M. Anderson (54th Annual Idaho Asphalt Conference, 2014). http://web.archive.org/web/20190430182245/https://www.webpages.uidaho.edu/bayomy/IAC/54th/Presentations_54th/2.%20IAC2014_MSCR_Mike%20Anderson.pdf. Accessed 17 Mar 2022

  40. Liu, Y., & You, Z. (2009). Determining burger’s model parameters of asphalt materials using creep-recovery testing data. In Z. You, A. R. Abbas, & L. Wang (Eds.), Pavements and materials: modeling, testing, and performance (pp. 26–36). American Society of Civil Engineers.

    Google Scholar 

  41. Goli, A., Baditha, A., Muppireddy, A. R., & Pandey, B. B. (2019). Comparison of various rutting parameters and modelling of creep and recovery behaviour of high modulus bituminous binders. International Journal of Pavement Research & Technology, 12, 648–658. https://doi.org/10.1007/s42947-019-0077-1

    Article  Google Scholar 

  42. Merusi, F. (2012). Delayed mechanical response in modified asphalt binders characteristics, modeling and engineering implications. Road Materials & Pavement Design, 13(Supl.1), 321–345.

    Article  Google Scholar 

  43. Roberts, F. L., Kandhal, P. S., Brown, E. R., Lee, D.-Y., & Kennedy, T. W. (1996). Hot mix asphalt materials, mixture design and construction (2nd ed.). Lanham: NAPA Education Foundation.

    Google Scholar 

  44. Sybilski, D. (1996). Evaluation of validity of conventional test methods in case of polymer bitumens. Preprints of Papers, American Chemical Society, Division of Fuel Chemistry, 41(4), 1302–1306.

    CAS  Google Scholar 

  45. Nejad, F. M., Gholami, M., Naderi, K., & Rahi, M. (2015). Evaluation of rutting properties of high density polyethylene modified binders. Materials & Structures, 48, 3295–3305.

    Article  Google Scholar 

  46. Marasteanu, M. O., Clyne, T., McGraw, J., Li, X., & Velazquez, R. (1901). High-temperature rheological properties of asphalt binders. Transportation Research Record, 2005, 52–59.

    Google Scholar 

  47. DuBois, E., Mehta, Y., & Nolan, A. (2014). Correlation between multiple stress creep recovery (MSCR) results and polymer modification of binder. Construction & Building Materials, 65, 184–190.

    Article  Google Scholar 

  48. S. Rani, R. Ghabchi, M. Zaman, S.A. Ali, Effect of polyphosphoric acid on stress sensitivity of polymer-modified and unmodified asphalt binders, in airfield and highway pavements 2019: Testing and characterization of pavement materials, ed. by: I. Al-Qadi, H. Ozer, A. Loizos, S. Murrell (American Society of Civil Engineers, Reston, 2019), p. 238–247

  49. Wang, H., Liu, X., Zhang, H., Apostolidis, P., Scarpas, T., & Erkens, S. (2020). Asphalt-rubber interaction and performance evaluation of rubberised asphalt binders containing non-foaming warm-mix additives. Road Materials & Pavement Design, 21(6), 1612–1633.

    Article  Google Scholar 

  50. Bulatović, V. O., Rek, V., & Marković, J. (2014). Rheological properties of bitumen modified with ethylene butylacrylate glycidylmethacrylate. Polymer Engineering & Science, 54(5), 1056–1065.

    Article  Google Scholar 

  51. Arshadi, A. (2013). Importance of asphalt binder properties on rut resistance of asphalt mixture. MSc: Thesis University of Wisconsin-Madison.

    Google Scholar 

  52. Divya, P. S., Gideon, C. S., & Krishnan, J. M. (2013). Influence of the type of binder and crumb rubber on the creep and recovery of crumb rubber modified bitumen. Journal of Materials in Civil Engineering, 25(4), 438–449.

    Article  CAS  Google Scholar 

  53. Li, X., Clyne, T., Reinke, G., Johnson, E. N., Gibson, N., & Kutay, M. E. (2011). Laboratory evaluation of asphalt binders and mixtures containing polyphosphoric acid. Transportation Research Record, 2210, 47–56.

    Article  CAS  Google Scholar 

  54. D’Angelo, J. (2010). New high-temperature binder specification using multistress creep and recovery. Transportation Research Circular, E-C147, 1–13.

    Google Scholar 

  55. Qi, X., & Witczak, M. W. (1998). Time-dependent permanent deformation models for asphaltic mixtures. Transportation Research Record, 1639, 83–93.

    Article  Google Scholar 

  56. Golalipour, A. (2011). Modification of multiple stress creep and recovery test procedure and usage in specification. Thesis University of Wisconsin-Madison.

    Google Scholar 

Download references

Acknowledgements

Grants 2013/20483-6 and 2006/55835-6, São Paulo Research Foundation (FAPESP).

Funding

São Paulo Research Foundation (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matheus David Inocente Domingos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inocente Domingos, M.D., Faxina, A.L. The Importance of Lower Truck Speeds (Longer Creep Times) on the Rutting Responses of Polymer-Modified Asphalt Binders. Int. J. Pavement Res. Technol. 17, 379–396 (2024). https://doi.org/10.1007/s42947-022-00242-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-022-00242-2

Keywords

Navigation