Skip to main content
Log in

Lateritic Soil Improvement Using Lime and MOFIC

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

This study investigates the effects of mucilage from Opuntia ficus-indica cladode (MOFIC), a bio-modifier, on Lime-stabilized Lateritic soil's durability and index features. Specifically, this research assessed the alterations to the Atterberg limits, compaction characteristics, California bearing ratio (CBR), index values and the unconfined compressive strength (UCS) properties of the soil samples and the stabilised samples through laboratory experiments. Lime + MOFIC was added to the soil at 0%, 2%, 4%, 8%, 12% and 16% wt (%) of soil. The result confirms alteration in the index and strength characteristics of the soil upon the addition of MOFIC to the Lime-treated Lateritic soil. The geotechnical characteristics of the soil improved from a subgrade soil to a subbase material upon the addition of 2% of LIME + MOFIC; with the presence of Lime + MOFIC at 2–4%, the bearing capacity of the soil improved from a subgrade material to a subbase material according to the Nigerian General Specification. The highest CBR value in Lime-stabilised was 56%, while the CBR value of Lime + MOFIC-stabilised soil was 70%. This represents a 20% increment in CBR. The presence of polysaccharides in MOFIC enhanced the soil binding attributes of the Lime and hence accelerated the strength properties of the soil. The promotion of green construction and reduction in environmental impacts of using Lime motivates the use of MOFIC in the study. Based on the result of the experimental research, MOFIC is thereby recommended as an eco-friendly alternative for enhancing engineering properties of pavements interlayers. The addition of MOFIC improved the index and strength properties of pavement interlayer material in road construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Loto, R. T. (2016). Electrochemical analysis of the corrosion inhibition properties of 4-hydroxy-3-methoxybenzaldehyde on low carbon steel in dilute acid media. Cogent Eng, 3(1), 1242107.

    Article  Google Scholar 

  2. Loto, C. A., Loto, R. T., & Popoola, A. P. I. (2011). Corrosion and plants extracts inhibition of mild steel in HCl. Int J Phy Sci, 6(15), 3689–3696.

    Google Scholar 

  3. Musa, A., & Alhaji, M. M. (2007). Effect of rice husk ash on Lime stabilised laterite. Leonardo El J Pract Technol, 6(11), 47–58.

    Google Scholar 

  4. Osinubi, K. J., & Amadi, A. A. (1991). Comparative assessment of contaminant sorption in lateritc soil—bentonite mixtures. Geo-environmental processes for soil remediation and geo-hazard mitigation. Geotechnical Special Publication, 199, 2779–2786.

    Google Scholar 

  5. Attoh-Okine, N. O. (2005). Lime treatment of laterite soils and gravel-revisited. Construction and Building Materials, 9(5), 283–287.

    Article  Google Scholar 

  6. Azadegan, O., Jafari, S. H., & Li, J. (2012). Compaction characteristics and mechanical properties of lime/lime treated granular soils. Electronic Journal of Geotechnical Engineering, 17, 2275–2284.

    Google Scholar 

  7. Gautam, P. K., Kalla, P. A., Jethoo, A. S., Agrawal, R., & Singh, H. (2018). Sustainable use of waste in flexible pavement: A review. Construction and Building Materials, 180, 239–253.

    Article  Google Scholar 

  8. Behnood, A. (2018). Soil and clay stabilisation with calcium- and non-calcium-based additives: A state-of-the-art review of challenges, approaches and techniques. Transportation Geotechnics, 17A, 14–32.

    Article  Google Scholar 

  9. Alawaji, H. A. (2001). Settlement and bearing capacity of geogrid-reinforced sand over collapsible soil. Geotextiles and Geomembranes, 19(2), 75–88.

    Article  Google Scholar 

  10. Amu, O. O., Ogunniyi, S. A., & Oladeji, O. O. (2011). Geotechnical properties of lateritic soil stabilised with sugarcane straw ash. American Journal of Scientific and Industrial Research Science, 2, 323–331.

    Article  Google Scholar 

  11. Marto, A., Latifi, N., & Eisazadeh, A. (2014). Effect of non-traditional additives on engineering and microstructural characteristics of laterite soil. Arabian Journal for Science and Engineering, 39, 6949–6958.

    Article  Google Scholar 

  12. Prusinski, J. R., & Bhattacharja, S. (1999). Effectiveness of Portland lime and Lime in stabilising clay soils. Seventh International Conference on Low-Volume Roads, Baton Rouge, Louisiana. Transportation Research Records, 1652, 215–227.

    Article  Google Scholar 

  13. Fazal, E., Yongfu, X., Babak, J., & Shazim, A. (2020). On the recent trends in expansive soil stabilisation using calcium-based stabiliser materials (Csms): A comprehensive review. Advances in Materials Science and Engineering. https://doi.org/10.1155/2020/1510969

    Article  Google Scholar 

  14. Bhattacharja, Bhatty, J. (2003). Comparative performance of Portland lime and lime instabilization of moderate to high plasticity clay soils. Portland Cement Association RD125, Skokie, Illinois.

  15. Druss, D.L. (2003). Guidelines for design and installation of soil–lime stabilisation. In: 3rd international conference on grouting and ground treatment New Orleans, Louisiana, United States.

  16. Anagnostopoulos, C. A., & Chatziangelou, M. (2008). Compressive strength of Lime stabilised soils. A new statistical model. Electronic Journal of Geotechnical Engineering, 13, 1–10.

    Google Scholar 

  17. Cárdenas, W.M., Arguelles, & Goycoolea, F.M. (1998). On the possible role of Opuntia ficus-indica mucilage in lime mortar performance in the protection of historical buildings. J. Prof. Assoc. Cactus Dev. 3. https://jpacd.org/jpacd/article/view/161

  18. Torres-Acosta, A.A., Martínez-Madrid, M., Loveday, D.C., & Silsbee, M.R. (2005). Nopal and aloe vera additions in concrete: electrochemical behavior of the reinforcing steel. In: Proceedings of the symposium new developments in the protection of steel in concrete, NACE CORROSION Congress, Houston, TX, p. 4.

  19. Sáenz, C., Sepúlveda, E., & Matsuhiro, B. (2004). Opuntia Spp. Mucilage’s: A functional component with industrial perspectives. Journal of Arid Environments, 57(3), 275–290.

    Article  Google Scholar 

  20. Inglese, P., Basile, F., & Cactus, S. M. (2012). Pear fruit production. In P. S. Nobel (Ed.), Cacti biology and uses (pp. 163–183). University of California Press.

    Google Scholar 

  21. Akinwumi, I., & Ukegbu, I. (2015). Soil modification by addition of cactus mucilage. Geomechanics and Engineering, 8(5), 649–661. https://doi.org/10.12989/gae.2015.8.5.649

    Article  Google Scholar 

  22. Pichler, T., Young, K., & Alcantar, N. (2021). Eliminating turbidity in drinking water using the mucilage of a common cactus. Water Supp, 12(2), 179–186.

    Article  Google Scholar 

  23. Young, K.A. (2006). The mucilage of Opuntia Ficus Indica: A natural, sustainable, and viable water treatment technology for use in rural Mexico for reducing turbidity and arsenic contamination in drinking water, M.Sc. Dissertation; University of South Florida, FL, USA.

  24. Torres-Acosta, A. A., Martinez-Molina, W., & Alonso-Guzman, E. M. (2012). State of the art on cactus additions in alkaline media as corrosion inhibitors. International Journal of Corrosion. https://doi.org/10.1155/2012/646142

    Article  Google Scholar 

  25. Torres-Acosta, A. A. (2007). Opuntia-ficus-indica (Nopal) mucilage as a steel corrosion inhibitor in alkaline media. Journal of Applied Electrochemistry, 37(7), 835–841.

    Article  Google Scholar 

  26. Leuven, V. (2014). The chemistry and technology of pectin (p. 8). Academic press International.

    Google Scholar 

  27. Medina-Torres, L., Brito-De La Fuente, E., Torrestiana-Sanchez, B., & Katthain, R. (2002). Rheological properties of the mucilage gum (Opuntia ficus indica). Food Hydrocolloids, 14, 417–424.

    Article  Google Scholar 

  28. Amin, E. S., Awad, O., & El-Sayed, M. (1970). The mucilage of Opuntia ficus indica. Carbohydrate Research, 15, 159–161.

    Article  Google Scholar 

  29. Paulsen, B. S., & Lund, S. P. (1979). Water soluble polysaccharides of Opuntia ficus indica. Phytochemistry, 18, 569–571.

    Article  Google Scholar 

  30. Trachtenberg, S., & Mayer, A. M. (1981). Composition and properties of Opuntia ficus indica. Phytochemistry, 20, 2665–2668.

    Article  Google Scholar 

  31. Nobel, P. S., Cacelier, J., & Andrade, J. L. (1992). Mucilage in cacti: Its aplopastic capactance, associated solutes, and influence on tissue water relations. Journal of Experimental Botany., 43, 641–648.

    Article  Google Scholar 

  32. Forni, E., Penci, M., & Polessello, A. (1994). A preliminary characterisation of some pectins from quince (Cydonia oblonga Mill.) and prickly pear (Opuntia ficus indica) peel. Carbohydrate Polymers, 23, 231–234.

    Article  Google Scholar 

  33. McGarvie, D., & Parolis, H. (1981). Methylation analysis of the mucilage of Opuntia ficus indica. Carbohydrate Research, 88, 305–314.

    Article  Google Scholar 

  34. Madjdoub, H., Roudesli, S., Picton, L., Le Cerf, D., Muller, G., & Grisel, M. (2001). Prickly pear nopals pectin from Opuntia ficus indica. Physicochemical study in dilute and semidilute solutions. Carbohydrate Polymers, 46, 69–79.

    Article  Google Scholar 

  35. Habibi, Y., Heyraud, A., Mahrouz, M., & Vignon, M. R. (2004). Structural features of pectic-polysaccharides from the skin of Opuntia ficus indica prickly pear fruits. Carbohydrate Research, 339, 119–1127.

    Google Scholar 

  36. Sepulveda, E., Saenz, C., Aliaga, E., & Aceituno, C. (2007). Extraction and characterization of mucilage in Opuntia spp. Journal of Arid Environments, 68, 534–545.

    Article  Google Scholar 

  37. ASTM D4318-10e1. (1990a). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils BSI.

  38. ASTM C977-10 Standard Specification for Quicklime and Hydrated Lime for Soil Stabilisation.

  39. Nigerian General Specification, Roads and Bridges; Federal Ministry of Works, Lagos, Nigeria, 1997.

  40. Ola, S. A. (1978). Geotechnical properties and behavior of some stabilised Nigerian lateritic soils. The Quarterly Journal of Engineering Geology, 11, 145–160.

    Article  Google Scholar 

  41. BS 1924-1:1990. Stabilized materials for civil engineering purposes: general requirements, sampling, sample preparation and on materials before stabilisation, British Standards Institution, London, UK.

  42. CEN. (2004). EN 13286-47. Unbound and hydraulically bound mixtures—part 47: Test method for the determination of the California bearing Ratio, Immediate Bearing Index and linear swelling”. European Standards (EN) CEN European Committee for Standardization, Brussels, Belgium.

  43. Head, K. H. (1994). Manual of soil laboratory testing (Vol. 2). Pentech Press.

    Google Scholar 

  44. BS 1377. (1990). Methods of test for soils for civil engineering purposes. PART 5: Compressibility, permeability and durability tests, British Standards Institution; BS1377, London, UK.

  45. Gordon, R.S., Milton, H.H., James, E.M. (1994). Soil stabilisation for pavements. Army Technical Manual No. 5-822-14/Air Force AFJMAN 32-1019, Dept. of the Army, and the Air Force, Washington, DC.

  46. Galati, E. M., Tripodo, M. M., Trovato, A., Miceli, N., & Monforte, M. T. (2002). Biological effect of Opuntia ficus indica (L.) Mill. (Cactaceae) waste matter Note 1: Diuretic activity. Journal of Ethnopharmacology, 79(1), 17–21.

    Article  Google Scholar 

  47. Young, K., Anzalone, A., & Alcantar, N. A. (2005). Using the Mexican cactus as a natural-based process for removing contaminants in drinking water. AIChE Annual Meeting, 93, 965–996.

    Google Scholar 

  48. William, F., Washington, P. N., Thaís, R. K., Matheus, F. M., & Jorge, A. P. C. (2017). Strength, shrinkage, erodibility and capillary flow characteristics of cement-treated recycled pavement materials. International Journal of Pavement Research and Technology, 10(5), 393–402.

    Article  Google Scholar 

  49. Mojtaba, S. B., Amiruddin, I., Mehdi, P. A., Gholamreza, F., & Mohammad, S. (2018). Measuring the effects of styrene butadiene copolymer latex-Portland cement additives on properties of stabilized soil-aggregate base. International Journal of Pavement Research and Technology, 11(5), 458–469.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Management of Covenant University, Ota, Ogun State, the University of Ibadan and the University of Lagos, Nigeria for the privilege to make use of their geotechnical laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Tolulope Loto.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busari, A.A., Loto, R.T., Dahunsi, B.I. et al. Lateritic Soil Improvement Using Lime and MOFIC. Int. J. Pavement Res. Technol. 16, 1393–1403 (2023). https://doi.org/10.1007/s42947-022-00204-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-022-00204-8

Keywords

Navigation