Skip to main content
Log in

Rheological Evaluation of Bitumen Binders with Polystyrene Waste

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

The principal focus of the current study is to evaluate the influence of polystyrene [as a polystyrene solution (PS)] to resolve the traditional limitations of some of the physical parameters, such as less elastic recovery (ER), storage instability and high temperature mixing requirements for bituminous binders. The conventional bitumen VG 30 and four samples of PS modified bitumen were prepared by modifying the conventional bitumen with PS waste using PS solution at different proportions. The physical parameters were studied by performing penetration, softening point, viscosity, elastic recovery and storage stability tests. The Fourier transform infrared spectroscopy (FTIR) test was used to classify the various functional groups present in the binders. The rheological properties were determined by dynamic shear rheometer (DSR) including multiple stress creep recovery (MSCR) and bending beam rheometer (BBR). These spectroscopy and rheological experimental results of PS modified bitumen were compared with conventional bitumen. Field-emission scanning electron microscopy and energy-dispersive X-ray analysis was used to examine the morphology of the bituminous binder. The experimental results indicated that the penetration, softening point, viscosity and storage stability of the modified bitumen with PS improved considerably. FTIR analysis confirms the existence of the styrene in the PS modified bitumen. The ER, DSR, MSCR and BBR tests indicated that this process of modification has a major influence in better the elastic and rheological characteristics of the PS modified bitumen. Overall, the findings showed that PS modified bitumen binders have better performance than conventional bitumen and successfully developed a wet process and a solution based new technique to handle the PS wastage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Raki, L., Masson, J. F., & Collins, P. (2000). Rapid bulk fractionation of maltenes into saturates, aromatics, and resins by flash chromatography. Energy & Fuels, 14, 160–163.

    Article  Google Scholar 

  2. Masson, J. F., Pelletier, L., & Collins, P. (2001). Rapid FTIR method for quantification of styrene-butadiene type copolymers in bitumen. Journal of Applied Polymer Science, 79, 1034–1041. https://doi.org/10.1002/1097-4628(20010207)79:6%3c1034::AID-APP60%3e3.0.CO;2-4

    Article  Google Scholar 

  3. Hu, C., Lin, W., Partl, M., Wang, D., Yu, H., & Zhang, Z. (2018). Waste packaging tape as a novel bitumen modifier for hot-mix asphalt. Construction and Building Materials, 193, 23–31. https://doi.org/10.1016/j.conbuildmat.2018.10.170

    Article  Google Scholar 

  4. Elkholy, S. A., Abd El-Rahman, A. M. M., El-Shafie, M., & Abo-Shanab, Z. L. (2018). Physical and rheological Properties of modified sulfur asphalt binder. International Journal of Pavement Research and Technology, 11, 838–845. https://doi.org/10.1016/j.ijprt.2018.07.005

    Article  Google Scholar 

  5. Wang, L., Razaqpur, G., Xing, Y., & Chen, G. (2015). Microstructure and rheological properties of aged and unaged polymer-modified asphalt binders. Road Material Pavement Design, 16, 592–607. https://doi.org/10.1080/14680629.2015.1021368

    Article  Google Scholar 

  6. Airey, G. D. (2002). Rheological evaluation of ethylene vinyl acetate polymer modified bitumens. Construction and Building Materials, 16, 473–487. https://doi.org/10.1016/S0950-0618(02)00103-4

    Article  Google Scholar 

  7. Isacsson, U., & Lu, X. (1999). Characterization of bitumens modified with SEBS. EVA and EBA polymers. Journal of Materials Science, 34, 3737–3745. https://doi.org/10.1023/A:1004636329521

    Article  Google Scholar 

  8. Ait-Kadi, A., Brahimi, B., & Bousmina, M. (1996). Polymer blends for enhanced asphalt binders. Polymer Engineering & Science, 36, 1724–1733. https://doi.org/10.1002/pen.10568

    Article  Google Scholar 

  9. Newman, J. K. (1998). Dynamic shear rheological properties of polymer modified asphalt binders. Journal of Elastomers and Plastics, 30, 245–263. https://doi.org/10.1177/009524439803000305

    Article  Google Scholar 

  10. Kalantar, Z. N., Karim, M. R., & Mahrez, A. (2012). A review of using waste and virgin polymer in pavement. Construction and Building Materials, 33, 55–62. https://doi.org/10.1016/j.conbuildmat.2012.01.009

    Article  Google Scholar 

  11. Enieb, M., & Diab, A. (2017). Characteristics of asphalt binder and mixtures containing nanosilica. International Journal of Pavement Research and Technology, 10, 148–157. https://doi.org/10.1016/j.ijprt.2016.11.009

    Article  Google Scholar 

  12. Ganesh, K., & Prajwal, D. T. (2020). Studies on fatigue performance of modified dense bituminous macadam mix using nano silica as an additive. International Journal of Pavement Research and Technology, 13, 75–82. https://doi.org/10.1007/s42947-019-0087-z

    Article  Google Scholar 

  13. Padhan, R. K., Mohanta, C. S., Sreeram, A., & Gupta, A. A. (2018). Rheological evaluation of bitumen modified using antistripping additives synthesised from waste polyethylene terephthalate (PET). International Journal of Pavement Engineering. https://doi.org/10.1080/10298436.2018.1519192

    Article  Google Scholar 

  14. Nejad, F. M., Azarhoosh, A., & Hamedi, G. H. (2014). Effect of high density polyethylene on the fatigue and rutting performance of hot mix asphalt—a laboratory study. Road Mater Pavement Des, 15, 746–756. https://doi.org/10.1080/14680629.2013.876443

    Article  Google Scholar 

  15. Mahida, S., Shah, Y. U., & Sharma, S. (2021). Analysis of the influence of using waste polystyrene in virgin bitumen. International Journal of Pavement Research and Technology. https://doi.org/10.1007/s42947-021-00041-1

    Article  Google Scholar 

  16. Padhan, R. K., & Gupta, A. A. (2018). Preparation and evaluation of waste PET derived polyurethane polymer modified bitumen through in situ polymerization reaction. Construction and Building Materials, 158, 337–345. https://doi.org/10.1016/j.conbuildmat.2017.09.147

    Article  Google Scholar 

  17. Li, J., Ni, F., Jin, J., & Zhou, Z. (2017). A comparison of rejuvenator and styrene–butadiene rubber latex used in hot in-place recycling. Road Material Pavement Design, 18, 101–115. https://doi.org/10.1080/14680629.2016.1142465

    Article  Google Scholar 

  18. Padhan, R. K., Gupta, A. A., Badoni, R. P., & Bhatnagar, A. K. (2013). Poly(ethylene terephthalate) waste derived chemicals as an antistripping additive for bitumen—an environment friendly approach for disposal of environmentally hazardous material. Polymer Degradation and Stability, 98, 2592–2601. https://doi.org/10.1016/j.polymdegradstab.2013.09.019

    Article  Google Scholar 

  19. Rahman, M. T., Mohajerani, A., & Giustozzi, F. (2020). Recycling of waste materials for asphalt concrete and bitumen: A review. Materials (Basel, Switzerland), 13, 1495. https://doi.org/10.3390/ma13071495

    Article  Google Scholar 

  20. Pouranian, M. R., & Shishehbor, M. (2019). Sustainability assessment of green asphalt mixtures: A review. Environments, 6, 73.

    Article  Google Scholar 

  21. Meran, C., Ozturk, O., & Yuksel, M. (2008). Examination of the possibility of recycling and utilizing recycled polyethylene and polypropylene. Materials and Design, 29, 701–705. https://doi.org/10.1016/j.matdes.2007.02.007

    Article  Google Scholar 

  22. Becker, I. M., Muller, A. J., & Rodriguez, Y. (2003). Use of rheological compatibility criteria to study SBS modified asphalts. Journal of Applied Polymer Science, 90, 1772–1782. https://doi.org/10.1002/app.12764

    Article  Google Scholar 

  23. Sarbu, A., Dima, S. O., Dobre, T., Udrea, I., Bradu, C., Avramescu, S., & Melinte, S. (2009). Polystyrene wastes recycling by lightweight concrete production. Revista De Chimie (Bucureti), 30, 1350–1356.

    Google Scholar 

  24. Sulong, N. H. R., Mustapa, S. A. S., & Abdul Rashid, M. K. (2019). Application of expanded polystyrene (EPS) in buildings and constructions: A review. Journal of Applied Polymer Science, 136, 47529. https://doi.org/10.1002/app.47529

    Article  Google Scholar 

  25. Fernandez, L. (2021). Global production capacity of polystyrene 2018 & 2024, Statista. https://www.statista.com/statistics/1065889/global-polystyrene-production-capacity/. Accessed 10 Dec 2019.

  26. Asaad, J. N., & Tawfik, S. Y. (2011). Polymeric composites based on polystyrene and cement dust wastes. Materials and Design, 32, 5113–5119. https://doi.org/10.1016/j.matdes.2011.06.010

    Article  Google Scholar 

  27. Jin, H. L., Gao, G. T., Zhang, Y. X., Zhang, Y., Sun, K., & Fan, Y. Z. (2002). Improved properties of polystyrene-modified asphalt through dynamic vulcanization. Polymer Testing, 21, 633–640. https://doi.org/10.1016/S0142-9418(01)00135-0

    Article  Google Scholar 

  28. Vila-Cortavitarte, M., Lastra-González, P., Calzada-Perez, M., & Indacoechea-Vega, I. (2018). Analysis of the influence of using recycled polystyrene as a substitute for bitumen in the behaviour of asphalt concrete mixtures. J Cleaner Production, 170, 1279–1287. https://doi.org/10.1016/j.jclepro.2017.09.232

    Article  Google Scholar 

  29. Vila-Cortavitarte, M., Lastra-Gonzalez, P., Calzada-Pérez, M., & Indacoechea, I. (2019). The use of recycled plastic as partial replacement of bitumen in asphalt concrete. Use of Recycled Plastics in Eco-efficient Concrete. https://doi.org/10.1016/B978-0-08-102676-2.00015-3

    Article  Google Scholar 

  30. Ramadan, K., Al-Khateeb, G., & Taamneh, M. (2020). Mechanical properties of styrofoam-modified asphalt binders. International Journal of Pavement Research and Technology, 13, 205–211. https://doi.org/10.1007/s42947-019-0102-4

    Article  Google Scholar 

  31. Lastra-González, P., Calzada-Pérez, M., Castro-Fresno, D., Vega-Zamanillo, A., & Indacoechea-Vega, I. (2016). Comparative analysis of the performance of asphalt concretes modified by dry way with polymeric waste. Construction and Building Materials, 112, 1133–1140. https://doi.org/10.1016/j.conbuildmat.2016.02.156

    Article  Google Scholar 

  32. Han, M., Li, J., Muhammad, Y., Hou, D., Zhang, F., Yin, Y., & Duan, S. (2018). Effect of polystyrene grafted graphene nanoplatelets on the physical and chemical properties of asphalt binder. Construction and Building Materials, 174, 108–119. https://doi.org/10.1016/j.conbuildmat.2018.04.082

    Article  Google Scholar 

  33. Li, J., Han, M., Muhammad, Y., Liu, Y., Yang, S., Duan, S., Huang, W., & Zhao, Z. (2018). Comparative analysis, road performance and mechanism od modification of polystyrene grapheme nanoplatelets (PS-GNPs) and octadecyl amine graphene nanoplatelets (ODA-GNPs) modified SBS incorporated asphalt binders. Construction and Building Materials, 193, 501–517. https://doi.org/10.1016/j.conbuildmat.2018.10.210

    Article  Google Scholar 

  34. Johnson, O. A., Kamaruddin, I., Akbar, I. (2020). Modification of Malaysia bituminous binder using waste polystyrene. In: Mohamed Nazri, F. (Eds.) Proceedings of AICCE'19. AICCE 2019. Lecture notes in civil engineering, Vol. 53. Springer, Cham. https://doi.org/10.1007/978-3-030-32816-0_82

  35. Nciri, N., Shin, T., & Cho, N. (2020). Towards the use of waste expanded polystyrene as potential modifier for flexible road pavements. Materials Today: Proceedings, 24, 763–771. https://doi.org/10.1016/j.matpr.2020.04.384

    Article  Google Scholar 

  36. Padhan, R. K., Sreeram, A., & Gupta, A. (2018). Evaluation of trans-polyoctenamer and cross-linking agents on the performance of waste polystyrene modified asphalt. Road Materials Pavement Design. https://doi.org/10.1080/14680629.2018.1533490

    Article  Google Scholar 

  37. Padhan, R. K., Gupta, A. A., Badoni, R. P., & Bhatnagar, A. K. (2015). Improved performance of a reactive polymer based bituminous mixes—effect of cross linking agent. Road Materials Pavement Design, 16(2), 300–315. https://doi.org/10.1080/14680629.2014.995210

    Article  Google Scholar 

  38. Yoo, P. J., & Yun, T. (2013). Micro-heterogenous modification of an asphalt binder using a dimethylpheonal and high-impact polystyrene solution. Construction and Building Materials, 49, 77–83. https://doi.org/10.1016/j.conbuildmat.2013.08.009

    Article  Google Scholar 

  39. Fang, C., Jiao, L., Hu, J., Yu, Q., Guo, D., Zhou, X., & Yu, R. (2014). Viscoelasticity of asphalt modified with packaging waste expanded polystyrene. Journal of Materials Science and Technology, 30(9), 939–994. https://doi.org/10.1016/j.jmst.2014.07.016

    Article  Google Scholar 

  40. Chen, C., Podolsky, J. H., Williams, R. C., & Cochran, E. W. (2019). Determination of the optimum polystyrene parameters using asphalt binder modified with poly(styrene-acrylated epoxidised soybean oil) through response surface modelling. Road Materials Pavement Design, 20(3), 572–591. https://doi.org/10.1080/14680629.2017.1407354

    Article  Google Scholar 

  41. Mahida, S., Shah, Y., Sangita, Kumar, S. (2017). Evaluation the properties of VG 10 bitumen modified with waste thermocol. In: 18th IRF world road meeting on safe roads and smart mobility: The engines of economic growth. New Delhi, India

  42. Mahida, S., Shah, Y., Sangita, Mehta, P. (2020) An experimental approach towards polystyrene modified bitumen. In: International conference on transportation planning and implementation methodologies for developing countries (13th TPMDC), 10–11th December 2020, Indian Institute of Technology Bombay, India

  43. Mahida, S., Shah, Y., Sangita, Mehta, P. (2021). A review on polymer modified bitumen: A focus on polystyrene. In: International Airfield and Highway Pavements Conference, of the Transportation & Development Institute (T&DI) of ASCE, June 8–10

  44. Mahida, S., Shah, Y., Sangita, Mehta, P (2021) Evaluating the physical properties of modified bitumen with waste polystyrene. In: International Airfield and Highway Pavements Conference, of the Transportation & Development Institute (T&DI) of ASCE, June 8–10

  45. Angelo, J. D., & Dongre, R. (2009). Practical use of multiple stress creep and recovery test. Transportation Research Record: Journal of Transportation Research Board, 2126, 73–82. https://doi.org/10.3141/2126-09

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supriya Mahida.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahida, S., Shah, Y.U., Sangita et al. Rheological Evaluation of Bitumen Binders with Polystyrene Waste. Int. J. Pavement Res. Technol. 16, 1352–1363 (2023). https://doi.org/10.1007/s42947-022-00201-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-022-00201-x

Keywords

Navigation