Skip to main content
Log in

Theoretical–Experimental Comparison of Behavior Between Deformations of Rigid Pavement Reinforced with Fibers and of Conventional Slabs

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

The use of fibers can be a reinforcement alternative to Portland concrete (PC) for controlling deformation and improving the flexion and tenacity of the material. It is possible to study the performance of rigid pavements both experimentally and theoretically. However, real studies are still required to evaluate the field performance of slabs as well as theoretical results, which, in most cases, stem from regulations based on ordinary concrete without fibers. This work evaluates the performance of traditional slabs (steel mesh (M) and mass concrete) as well as slabs with the addition of polymeric fibers (PF) (5 kg/m3 of concrete), including silica fume (SF) (0.0% and 7.0% weight cement ‘wc’). The slabs were subjected to a central load test to obtain the load–deflection curves and then compared with a model that incorporates the characteristics of the concrete and the reinforcement. The results showed significantly lower deflections for the same load (138 kN) for concrete reinforced with polymeric macro-fibers (PC + SF + PF) compared with slabs with mesh and silica fume (PC + M + SF) (− 22%), conventional PC (− 51%) and the mixture with mesh (PC + M) (− 34%). The addition of polymeric fibers added 37.7% more final load and 48% less deflection. The breaking module improved by 9% compared with the electro-welded mesh and by 15% compared with the mass concrete. The model showed that correct distribution of the ground rigidity and incorporation of the breaking module into the input parameters are important aspects to be defined in real reproductions of the deformations. The work demonstrated that pavement slabs with polymeric fibers can perform better than conventional steel-reinforced slabs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Data and material will be available upon reasonable request.

Code availability

Not applicable.

References

  1. Van Damme, H. (2018). Concrete material science: Past, present, and future innovations. Cement and Concrete Research, 112, 5–24. https://doi.org/10.1016/J.CEMCONRES.2018.05.002

    Article  Google Scholar 

  2. Abtahi, S. M., Sheikhzadeh, M., & Hejazi, S. M. (2010). Fiber-reinforced asphalt-concrete—A review. Construction and Building Materials, 24(6), 871–877. https://doi.org/10.1016/j.conbuildmat.2009.11.009

    Article  Google Scholar 

  3. Zhao, W., Yang, Q., Wu, W., & Liu, J. (2022). Structural condition assessment and fatigue stress analysis of cement concrete pavement based on the GPR and FWD. Construction and Building Materials, 328, 127044. https://doi.org/10.1016/J.CONBUILDMAT.2022.127044

    Article  Google Scholar 

  4. Kheradmandi, N., & Mehranfar, V. (2022). A critical review and comparative study on image segmentation-based techniques for pavement crack detection. Construction and Building Materials, 321, 126162. https://doi.org/10.1016/J.CONBUILDMAT.2021.126162

    Article  Google Scholar 

  5. McMahon, J. A., & Birely, A. C. (2018). Service performance of steel fiber reinforced concrete (SFRC) slabs. Engineering Structures, 168, 58–68. https://doi.org/10.1016/j.engstruct.2018.04.067

    Article  Google Scholar 

  6. Affan, M., & Ali, M. (2022). Experimental investigation on mechanical properties of jute fiber reinforced concrete under freeze-thaw conditions for pavement applications. Construction and Building Materials, 323, 126599. https://doi.org/10.1016/J.CONBUILDMAT.2022.126599

    Article  Google Scholar 

  7. Tadi, C., & Rao, T. C. (2022). Investigating the performance of self-compacting concrete pavement containing GGBS. Materials Today: Proceedings, 49, 2013–2018. https://doi.org/10.1016/J.MATPR.2021.08.160

    Article  Google Scholar 

  8. Xu, Q., Chen, H., & Prozzi, J. A. (2010). Performance of fiber reinforced asphalt concrete under environmental temperature and water effects. Construction and Building Materials, 24(10), 2003–2010. https://doi.org/10.1016/j.conbuildmat.2010.03.012

    Article  Google Scholar 

  9. Chen, X., & Wang, H. (2022). Life-cycle assessment and multi-criteria performance evaluation of pervious concrete pavement with fly ash. Resources, Conservation and Recycling, 177, 105969. https://doi.org/10.1016/j.resconrec.2021.105969

    Article  Google Scholar 

  10. Li, Z., Shen, A., Long, H., Guo, Y., & He, T. (2021). Dynamic deterioration of strength, durability, and microstructure of pavement concrete under fatigue load. Construction and Building Materials, 306, 124912. https://doi.org/10.1016/j.conbuildmat.2021.124912

    Article  Google Scholar 

  11. de Alencar-Monteiro, V. M., Lima, L. R., & de Andrade-Silva, F. (2018). On the mechanical behavior of polypropylene, steel and hybrid fiber reinforced self-consolidating concrete. Construction and Building Materials, 188, 280–291. https://doi.org/10.1016/j.conbuildmat.2018.08.103

    Article  Google Scholar 

  12. Yoo, D. Y., Oh, T., Shin, W., Kim, S., & Banthia, N. (2021). Tensile behavior of crack-repaired ultra-high-performance fiber-reinforced concrete under corrosive environment. Journal of Materials Research and Technology., 15, 6813–6827. https://doi.org/10.1016/J.JMRT.2021.11.121

    Article  Google Scholar 

  13. Narule, G. N., & Visapure, A. N. (2022). Experimental investigation on compressive and flexural performance of Forta-fiber reinforced concrete. Materials Today: Proceedings, 56, 406–411. https://doi.org/10.1016/J.MATPR.2022.01.244

    Article  Google Scholar 

  14. Ahmad, J., & Zhou, Z. (2022). Mechanical properties of natural as well as synthetic fiber reinforced concrete: a review. Construction and Building Materials, 333, 127353. https://doi.org/10.1016/J.CONBUILDMAT.2022.127353

    Article  Google Scholar 

  15. Zhang, J., Wang, Z., & Ju, X. (2013). Application of ductile fiber reinforced cementitious composite in jointless concrete pavements. Composites. Part B, Engineering, 50, 224–231. https://doi.org/10.1016/j.compositesb.2013.02.007

    Article  Google Scholar 

  16. Hesami, S., Salehi-Hikouei, I., & Emadi, S. A. A. (2016). Mechanical behavior of self-compacting concrete pavements incorporating recycled tire rubber crumb and reinforced with polypropylene fiber. Journal of Cleaner Production, 133, 228–234. https://doi.org/10.1016/j.jclepro.2016.04.079

    Article  Google Scholar 

  17. Ali, B., Qureshi, L. A., & Kurda, R. (2020). Environmental and economic benefits of steel, glass, and polypropylene fiber reinforced cement composite application in jointed plain concrete pavement. Composites Communications, 22, 100437. https://doi.org/10.1016/j.coco.2020.100437

    Article  Google Scholar 

  18. Jiang, H., Hu, Z., Feng, J., Wang, T., & Xu, Z. (2022). Flexural behavior of UHPC-filled longitudinal connections with non-contacting lap-spliced reinforcements for narrow joint width. Structures, 39, 620–636. https://doi.org/10.1016/J.ISTRUC.2022.03.017

    Article  Google Scholar 

  19. Sorelli, L. G., Meda, A., & Plizzari, G. A. (2006). Steel fiber concrete slabs on ground: A structural matter. ACI Structural Journal, 103(4), 551–558. https://doi.org/10.14359/16431

    Article  Google Scholar 

  20. Julián, C., Diego, S., & Martha, S. (2016). Desempeño de losas de concreto sobre terreno reforzadas con malla electrosoldada o fibras de acero. Ingeniería, Investigación y Tecnología, 17(4), 499–510. https://doi.org/10.1016/J.RIIT.2016.11.009

    Article  Google Scholar 

  21. Carrillo, J., & Silva-Páramo, D. (2016). Ensayos a flexión de losas de concreto sobre terreno reforzadas con fibras de acero. Ingeniería, Investigación y Tecnología, 17(3), 317–330. https://doi.org/10.1016/J.RIIT.2016.07.003

    Article  Google Scholar 

  22. Torres, D. A., Bastidas, J. G., & Ruge Cardenas, J. C. (2018). Reinforced Concrete with Synthetic Fibers (PET+PP) for Rigid Pavement Structures. In: 2018 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI), Oct. 2018, pp. 1–5, https://doi.org/10.1109/CONIITI.2018.8587056.

  23. Garzón-Vergara, D. O. (2009). Eficiencia en la Transferencia de Cargas en Juntas Transversales de Pavimento Rígido con Fibras Metálicas. Universidad Nacional de Colombia.

    Google Scholar 

  24. Laxmikanth, P., & Vavrik, W. R. (2016). Enhancing pavement performance prediction models for the Illinois Tollway System. International Journal of Pavement Research and Technology., 9(1), 14–19. https://doi.org/10.1016/J.IJPRT.2015.12.002

    Article  Google Scholar 

  25. Daniel, C. G., & Chairuddin, F. (2017). Compare the results between model laboratory-test for rigid pavement and EverStressFE software analysis. Procedia Engineering., 171, 1377–1383. https://doi.org/10.1016/j.proeng.2017.01.448

    Article  Google Scholar 

  26. Čebašek, T. M., Esen, A. F., Woodward, P. K., Laghrouche, O., & Connolly, D. P. (2018). Full scale laboratory testing of ballast and concrete slab tracks under phased cyclic loading. Transportation Geotechnics., 17, 33–40. https://doi.org/10.1016/j.trgeo.2018.08.003

    Article  Google Scholar 

  27. Wu, Z., Mahdi, M., & Rupnow, T. D. (2016). Accelerated pavement testing of thin RCC over soil cement pavements. International Journal of Pavement Research and Technology., 9(3), 159–168. https://doi.org/10.1016/j.ijprt.2016.06.004

    Article  Google Scholar 

  28. Xiao, D., & Zhong, W. (2018). Longitudinal cracking of jointed plain concrete pavements in Louisiana: Field investigation and numerical simulation. International Journal of Pavement Research and Technology., 11(5), 417–426. https://doi.org/10.1016/J.IJPRT.2018.07.004

    Article  Google Scholar 

  29. Alani, A. M., & Beckett, D. (2013). Mechanical properties of a large scale synthetic fibre reinforced concrete ground slab. Construction and Building Materials, 41, 335–344. https://doi.org/10.1016/j.conbuildmat.2012.11.043

    Article  Google Scholar 

  30. Wang, W., & Chouw, N. (2018). Experimental and theoretical studies of flax FRP strengthened coconut fibre reinforced concrete slabs under impact loadings. Construction and Building Materials, 171, 546–557. https://doi.org/10.1016/J.CONBUILDMAT.2018.03.149

    Article  Google Scholar 

  31. Beskou, N. D., & Theodorakopoulos, D. D. (2011). Dynamic effects of moving loads on road pavements: A review. Soil Dynamics and Earthquake Engineering, 31(4), 547–567. https://doi.org/10.1016/J.SOILDYN.2010.11.002

    Article  Google Scholar 

  32. Huang, Y., Wang, T., Sun, H., Li, C., Yin, L., & Wang, Q. (2022). Mechanical properties of fibre reinforced seawater sea-sand recycled aggregate concrete under axial compression. Construction and Building Materials, 331, 127338. https://doi.org/10.1016/J.CONBUILDMAT.2022.127338

    Article  Google Scholar 

  33. Ali, B., Yilmaz, E., Sohail-Jameel, M., Haroon, W., & Alyousef, R. (2021). Consolidated effect of fiber-reinforcement and concrete strength class on mechanical performance, economy and footprint of concrete for pavement use. Journal of King Saud University - Engineering Sciences. https://doi.org/10.1016/J.JKSUES.2021.09.005

    Article  Google Scholar 

  34. Correal, J. F., Herrán, C. A., Carrillo, J., Reyes, J. C., & Hermida, G. (2018). Performance of hybrid fiber-reinforced concrete for low-rise housing with thin walls. Construction and Building Materials, 185(10), 519–529. https://doi.org/10.1016/j.conbuildmat.2018.07.048

    Article  Google Scholar 

  35. Carrillo, J., Ramirez, J., & Lizarazo-Marriaga, J. (2019). Modulus of elasticity and Poisson’s ratio of fiber-reinforced concrete in Colombia from ultrasonic pulse velocities. Journal of Building Engineering., 23, 18–26. https://doi.org/10.1016/j.jobe.2019.01.016

    Article  Google Scholar 

  36. Sena and Ingueto Ltda. (2017). New high-strength hydraulic pavement for mobile loads with natural stone aggregates and the addition of superficially modified fibers. Cartagena de Indias.

  37. Nili, M., & Afroughsabet, V. (2010). The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete. Construction and Building Materials, 24, 927–933. https://doi.org/10.1016/j.conbuildmat.2009.11.025

    Article  Google Scholar 

  38. Wongkeo, W., Thongsanitgarn, P., Ngamjarurojana, A., & Chaipanich, A. (2014). Compressive strength and chloride resistance of self-compacting concrete containing high level fly ash and silica fume. Materials and Design, 64, 261–269. https://doi.org/10.1016/J.MATDES.2014.07.042

    Article  Google Scholar 

  39. Xuan, D. X., Shui, Z. H., & Wu, S. P. (2009). Influence of silica fume on the interfacial bond between aggregate and matrix in near-surface layer of concrete. Construction and Building Materials, 23(7), 2631–2635. https://doi.org/10.1016/j.conbuildmat.2009.01.006

    Article  Google Scholar 

  40. Bernal, J., Reyes, E., Massana, J., León, N., & Sánchez, E. (2018). Fresh and mechanical behavior of a self-compacting concrete with additions of nano-silica, silica fume and ternary mixtures. Construction and Building Materials, 160, 196–210. https://doi.org/10.1016/j.conbuildmat.2017.11.048

    Article  Google Scholar 

  41. Fecundo Sanches, L. C. (1998). Uma resolucao de placas com a teoria de mindlin atra ves do metodo dos elementos de contorno. Universidade Estadual de Campinas, Facultade de Engenharia Civil - Brazil, 1998. http://repositorio.unicamp.br/bitstream/REPOSIP/258074/1/Sanches_LuizCarlosFacundo_M.pdf. Accessed 25 Apr 2019.

  42. Isla Vallejos, C., Nozaki Uribe, M., & O. V. C. (2017). Simposio de Habilitación Profesional: Departamento de Ingeniería Civil. In: Modelación y análisis modal con elementos sólidos en SAP2000 de un muro de albañilería sin reforzar, 2017, pp. 1–22.

  43. Ondrej Kalny, A. H. (2017). Computer and Structure Inc. (CSI) Guide to SAP2000. 2013, 2017. https://wiki.csiamerica.com/display/SAP2000/Home#Home-Design,Output,andInteroperability.

  44. Berrocal Olave, A. (2018). Evaluación patológica de la vulnerabilidad sísmica y efectos del oleaje en el fuerte-batería de San José y San Fernando de Bocachica. Universidad de Granada.

  45. Chaipanna, P., & Jongpradist, P. (2019). 3D response analysis of a shield tunnel segmental lining during construction and a parametric study using the ground-spring model. Tunnelling and Underground Space Technology, 90, 369–382. https://doi.org/10.1016/j.tust.2019.05.015

    Article  Google Scholar 

  46. Coduto, D., Kitch, W., & Yeung, M. (2015). Foundation design: principles and practices (Vol. 3). Pearson.

    Google Scholar 

  47. Al-Kubaisi, O., Al-Zaidee, S., & Fadhil, A. (2017). Using finite element to modify winkler model for raft foundation supported on dry granular soils. International Journal of Science and Research., 6(4), 130–135. https://doi.org/10.21275/ART20171997

    Article  Google Scholar 

  48. Loukidis, D., & Tamiolakis, G. P. (2017). Spatial distribution of Winkler spring stiffness for rectangular mat foundation analysis. Engineering Structures, 153, 443–459. https://doi.org/10.1016/j.engstruct.2017.10.001

    Article  Google Scholar 

  49. Bai, Y. L., Mei, S. J., Li, P., & Xu, J. (2021). Cyclic stress-strain model for large-rupture strain fiber-reinforced polymer (LRS FRP)-confined concrete. Journal of Building Engineering., 42, 102459. https://doi.org/10.1016/J.JOBE.2021.102459

    Article  Google Scholar 

  50. Mousavi, S. M., & Ranjbar, M. M. (2021). Experimental study of the effect of silica fume and coarse aggregate type on the fracture characteristics of high-strength concrete. Engineering Fracture Mechanics, 258, 108094. https://doi.org/10.1016/J.ENGFRACMECH.2021.108094

    Article  Google Scholar 

  51. Khan, M., & Ali, M. (2019). Improvement in concrete behavior with fly ash, silica-fume and coconut fibres. Construction and Building Materials, 203, 174–187. https://doi.org/10.1016/j.conbuildmat.2019.01.103

    Article  Google Scholar 

  52. United States Department of Transportation Federal highway administration. (2001). The effects of higher strength and associated concrete properties on pavement performance. Distribution, no. June, 2001, [Online]. Available: https://www.fhwa.dot.gov/publications/research/infrastructure/pavements/00161.pdf.

  53. McCarthy, L. M., Gudimettla, J. M., Crawford, G. L., Guercio, M. C., & Allen, D. (2015). Impacts of variability in coefficient of thermal expansion on predicted concrete pavement performance. Construction and Building Materials, 93, 711–719. https://doi.org/10.1016/J.CONBUILDMAT.2015.04.058

    Article  Google Scholar 

  54. An, J., Kim, S., Nam, B., & Durham, S. (2017). Effect of aggregate mineralogy and concrete microstructure on thermal expansion and strength properties of concrete. Applied Sciences, 7(12), 1307. https://doi.org/10.3390/app7121307

    Article  Google Scholar 

  55. Smirnova, O., Kharitonov, A., & Belentsov, Y. (2018). Influence of polyolefin fibers on the strength and deformability properties of road pavement concrete. Journal of Traffic and Transportation Engineering (English Edition). https://doi.org/10.1016/j.jtte.2017.12.004

    Article  Google Scholar 

  56. Li, Y., & Li, Y. (2019). Evaluation of elastic properties of fiber reinforced concrete with homogenization theory and finite element simulation. Construction and Building Materials, 200, 301–309. https://doi.org/10.1016/J.CONBUILDMAT.2018.12.134

    Article  Google Scholar 

  57. Lezgy-Nazargah, M., Emamian, S. A., Aghasizadeh, E., & Khani, M. (2018). Predicting the mechanical properties of ordinary concrete and nano-silica concrete using micromechanical methods. Sadhana. https://doi.org/10.1007/S12046-018-0965-0

    Article  Google Scholar 

  58. Korolev, A. S., et al. (2021). Compressive and tensile elastic properties of concrete: Empirical factors in span reinforced structures design. Materials (Basel), 14(24), 1–15. https://doi.org/10.3390/ma14247578

    Article  Google Scholar 

  59. Al-Hassani, H. M., Khalil, W. I., & Danha, L. S. (2017). Proposed model for uniaxial compression behavior of reactive powder concrete. Journal of University of Babylon for Engineering Sciences, 23(3), 591–606.

    Google Scholar 

  60. Zeng, J. J., Ye, Y. Y., Gao, W. Y., Smith, S. T., & Guo, Y. C. (2020). Stress-strain behavior of polyethylene terephthalate fiber-reinforced polymer-confined normal-, high- and ultra high-strength concrete. The Journal of Building Engineering., 30, 101243. https://doi.org/10.1016/J.JOBE.2020.101243

    Article  Google Scholar 

  61. Xiong, Z., et al. (2022). Axial performance of seawater sea-sand concrete columns reinforced with basalt fibre-reinforced polymer bars under concentric compressive load. The Journal of Building Engineering., 47, 103828. https://doi.org/10.1016/J.JOBE.2021.103828

    Article  Google Scholar 

  62. Ray, S., Haque, M., Rahman, M. M., Sakib, M. N., & Al-Rakib, K. (2021). Experimental investigation and SVM-based prediction of compressive and splitting tensile strength of ceramic waste aggregate concrete. Journal of King Saud University - Engineering Sciences. https://doi.org/10.1016/J.JKSUES.2021.08.010

    Article  Google Scholar 

  63. Shafigh, P., Jumaat, M. Z., Bin-Mahmud, H., & Hamid, N. A. A. (2012). Lightweight concrete made from crushed oil palm shell: Tensile strength and effect of initial curing on compressive strength. Construction and Building Materials., 27(1), 252–258. https://doi.org/10.1016/j.conbuildmat.2011.07.051

    Article  Google Scholar 

  64. Di Maida, P., Radi, E., Sciancalepore, C., & Bondioli, F. (2015). Pullout behavior of polypropylene macro-synthetic fibers treated with nano-silica. Construction and Building Materials, 82, 39–44. https://doi.org/10.1016/j.conbuildmat.2015.02.047

    Article  Google Scholar 

  65. Ali, B., Qureshi, L. A., & Khan, S. U. (2020). Flexural behavior of glass fiber-reinforced recycled aggregate concrete and its impact on the cost and carbon footprint of concrete pavement. Construction and Building Materials, 262, 120820. https://doi.org/10.1016/j.conbuildmat.2020.120820

    Article  Google Scholar 

  66. Shen, D., Liu, X., Zend, X., Zhao, X., & Jiang, G. (2020). Effect of polypropylene plastic fibers length on cracking resistance of high performance concrete at early age. Construction and Building Materials., 244, 117874.

    Article  Google Scholar 

  67. Hongbo, Z., Haiyun, Z., & Hongxiang, G. (2020). Characteristics of ductility enhancement of concrete by a macro polypropylene fiber. Pre-Proof. https://doi.org/10.1016/j.rinma.2020.100087

    Article  Google Scholar 

  68. Sengun, E., Alam, B., Shabani, R., & Yaman, I. O. (2021). Strength and fracture properties of roller compacted concrete (RCC) prepared by an in-situ compaction procedure. Construction and Building Materials, 271, 121563. https://doi.org/10.1016/j.conbuildmat.2020.121563

    Article  Google Scholar 

  69. Debbarma, S., & Ransinchung, G. D. (2020). Achieving sustainability in roller compacted concrete pavement mixes using reclaimed asphalt pavement aggregates—state of the art review. Journal of Cleaner Production, 287, 125078. https://doi.org/10.1016/j.jclepro.2020.125078

    Article  Google Scholar 

  70. Wu, L., Farzadnia, N., Shi, C., Zhang, Z., & Wang, H. (2017). Autogenous shrinkage of high performance concrete: A review. Construction and Building Materials, 149, 62–75. https://doi.org/10.1016/J.CONBUILDMAT.2017.05.064

    Article  Google Scholar 

  71. Belletti, B., Cerioni, R., Meda, A., & Plizzari, G. (2008). Design aspects on steel fiber-reinforced concrete pavements. Journal of Materials in Civil Engineering, 20(9), 599–607. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:9(599)

    Article  Google Scholar 

  72. Ma, W., et al. (2020). Mechanical properties and engineering application of cellulose fiber-reinforced concrete. Materials Today Communications., 22, 100818. https://doi.org/10.1016/j.mtcomm.2019.100818

    Article  Google Scholar 

  73. Nobili, A., Lanzoni, L., & Tarantino, A. M. (2013). Experimental investigation and monitoring of a polypropylene-based fiber reinforced concrete road pavement. Construction and Building Materials, 47, 888–895. https://doi.org/10.1016/j.conbuildmat.2013.05.077

    Article  Google Scholar 

  74. Ong, K. C. G., Basheerkhan, M., & Paramasivan, P. (1999). Resistance of fibre concrete slabs to low velocity projectile impact. Cement and Concrete Composites, 21(5–6), 391–401. https://doi.org/10.1016/S0958-9465(99)00024-4

    Article  Google Scholar 

  75. Caselunghe, A., & Eriksson, J. (2012). Structural Element Approaches for Soil-Structure Interaction. Chalmers University of Technology.

    Google Scholar 

  76. Shams, M. A., Shahin, M. A., & Ismail, M. A. (2019). Numerical analysis of slab foundations on reactive soils incorporating sand cushions. Computers and Geotechnics, 112, 218–229. https://doi.org/10.1016/j.compgeo.2019.04.026

    Article  Google Scholar 

  77. Aggestam, E., & Nielsen, J. C. O. (2020). Simulation of vertical dynamic vehicle–track interaction using a three-dimensional slab track model. Engineering Structures. https://doi.org/10.1016/j.engstruct.2020.110972

    Article  Google Scholar 

  78. Rizzuto, J. P., Shaaban, I. G., Paschalis, S. A., Mustafa, T. S., & Benterkia, Z. (2022). Experimental and theoretical behaviour of large scale loaded steel mesh reinforced concrete Ground-Supported slabs. Construction and Building Materials, 327, 126831. https://doi.org/10.1016/J.CONBUILDMAT.2022.126831

    Article  Google Scholar 

  79. Mahmud, G. H., Hassan, A. M. T., Jones, S. W., & Schleyer, G. K. (2021). Experimental and numerical studies of ultra high performance fibre reinforced concrete (UHPFRC) two-way slabs. Structures, 29, 1763–1778. https://doi.org/10.1016/J.ISTRUC.2020.12.053

    Article  Google Scholar 

  80. Khaloo, A. R., & Afshari, M. (2005). Flexural behaviour of small steel fibre reinforced concrete slabs. Cement and Concrete Composites, 27(1), 141–149. https://doi.org/10.1016/j.cemconcomp.2004.03.004

    Article  Google Scholar 

  81. Hussain, I., Ali, B., Akhtar, T., Jameel, M. S., & Raza, S. S. (2020). Comparison of mechanical properties of concrete and design thickness of pavement with different types of fiber-reinforcements (steel, glass, and polypropylene). Case Studies in Construction Materials, 13, e00429. https://doi.org/10.1016/j.cscm.2020.e00429

    Article  Google Scholar 

Download references

Funding

The authors would like to thank the Fund for the Promotion of Technological Innovation, which, through the “Fomento IDT 2015–2017- Mipymes Proceso 2” campaign, provided financial support to the “New high-strength hydraulic pavement for mobile loads with natural stone aggregates and the addition of superficially modified fibers” project, which was a joint effort of the INGUETO Company and Cia Ltda, the University of Cartagena (Colombia) and SENA (Colombia’s nationwide training service). Finally, thanks to Professor Jair Arrieta Baldovino for his valuable review and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

All authors whose names appear on the submission: made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data; or the creation of new software used in the work; approved the version to be published.

Corresponding author

Correspondence to Manuel Saba.

Ethics declarations

Conflict of interest

I declare that there is no potential conflict of interest regarding this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaz, Y.G., Torres-Ortega, R., Saba, M. et al. Theoretical–Experimental Comparison of Behavior Between Deformations of Rigid Pavement Reinforced with Fibers and of Conventional Slabs. Int. J. Pavement Res. Technol. 16, 1339–1351 (2023). https://doi.org/10.1007/s42947-022-00200-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-022-00200-y

Keywords

Navigation