Skip to main content
Log in

Artificial Neural Network Models for the Estimation of the Optimum Asphalt Content of Asphalt Mixtures

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

The aggregate gradation has a significant influence on the required optimum asphalt content (OAC) on the asphalt mix as the OAC is mainly responsible for coating the aggregate surface area and filling the voids in the aggregate particles. In general, laboratory tests are used for the estimation of the OAC. In Egypt, Marshall test is the most common test used for the estimation of the OAC. However, the procedures of this approach consume significant time and its results are subjected to deviations. Thus, this paper employs the multilayer perceptron feedforward neural network technique for the prediction of the OAC from the aggregate gradation for 140 asphalt mix samples. To optimize the settings and hyperparameters of the ANN, 240 different artificial neural networks (ANNs) with different number of hidden layers, different number of neurons per hidden layers, and different activation functions are tested to find the optimum ANN with the best predictions and lowest errors. Results show that the optimum ANN uses the logistic activation function and consists of four hidden layers with two neurons per layer. This optimum ANN can predict the OAC with R2 value of 0.982 when used on the testing set. Additionally, the optimum ANN was validated on three datasets from the literature to test the ability of the ANN to generalize and results show that the optimum ANN can predict the OAC with high accuracy for asphalt mixes prepared in different countries and with different properties such as the aggregate gradation, and bitumen type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

OAC:

Optimum asphalt content

ANN:

Artificial neural network

%P(I):

Percentage passing from sieve i

References

  1. The Asphalt Institute. (1988). Mix design methods for asphalt concrete and other hot-mix types. Manual Series, 2. Asphalt Institute .

    Google Scholar 

  2. Rakaraddi, P. G., & Gomarsi, V. (2015). Establishing relationship between CBR with different soil properties. International Journal of Research in Engineering and Technology, 4(2), 182–188.

    Article  Google Scholar 

  3. Dias, J. F., Picado-Santos, L. G., & Capitão, S. D. (2014). Mechanical performance of dry process fine crumb rubber asphalt mixtures placed on the Portuguese road network. Construction and Building Materials, 73, 247–254.

    Article  Google Scholar 

  4. Liu, Q. T., & Wu, S. P. (2014). Effects of steel wool distribution on properties of porous asphalt concrete. Key Engineering Materials, 599, 150–154.

    Article  Google Scholar 

  5. García, A., Norambuena-Contreras, J., Bueno, M., & Partl, M. N. (2014). Influence of steel wool fibers on the mechanical, thermal, and healing properties of dense asphalt concrete. In ASTM International.

  6. Pasandín, A. R., & Pérez, I. (2015). Overview of bituminous mixtures made with recycled concrete aggregates. Construction and Building Materials, 74, 151–161.

    Article  Google Scholar 

  7. Zaumanis, M., Mallick, R. B., & Frank, R. (2016). 100% hot mix asphalt recycling: Challenges and benefits. Transportation Research Procedia, 14, 3493–3502.

    Article  Google Scholar 

  8. Wang, L., Gong, H., Hou, Y., Shu, X., & Huang, B. (2017). Advances in pavement materials, design, characterisation, and simulation. Road Materials and Pavement Design, 18(sup3), 1–11.

    Article  Google Scholar 

  9. Tapkın, S., Çevik, A., & Uşar, Ü. (2010). Prediction of Marshall test results for polypropylene modified dense bituminous mixtures using neural networks. Expert Systems with Applications, 37(6), 4660–4670.

    Article  Google Scholar 

  10. Mousa, K. M., Abdelwahab, H. T., & Hozayen, H. A. (2021). Models for estimating optimum asphalt content from aggregate gradation. Proceedings of the Institution of Civil Engineers-Construction Materials, 174(2), 69–74.

    Article  Google Scholar 

  11. Kandhal, P. S., & Cross, S. A. (1993). Effect of aggregate gradation on measured asphalt content. National Center for Asphalt Technology.

    Google Scholar 

  12. Ozturk, H. I., Saglik, A., Demir, B., & Gungor, A. G. (2016, June). An artificial neural network base prediction model and sensitivity analysis for Marshall mix design. In Proceedings of the 6th Eurasphalt & Eurobitume Congress, Prague, Czech Republic.

  13. Gomaa, A. E. (2014). Marshall test results prediction using artificial neural network (Doctoral dissertation, MSc thesis, Arab Academy for Science and Technology, Cairo, Egypt).

  14. Liu, W. F., Li, H. M., & Tian, B. P. (2011). Research on designing optimum asphalt content of asphalt mixture by calculation and experimental method. In Applied Mechanics and Materials (Vol. 97, pp. 23–27). Trans Tech Publications Ltd.

  15. Aljassar, A. H., Ali, M. A., & Alzaabi, A. (2002). Modeling Marshall test results for optimum asphalt-concrete mix design. Kuwait Journal of Science and Engineering, 29(1), 181–195.

    Google Scholar 

  16. Baldo, N., Manthos, E., & Pasetto, M. (2018). Analysis of the mechanical behaviour of asphalt concretes using artificial neural networks. Advances in Civil Engineering. https://doi.org/10.1155/2018/1650945

    Article  Google Scholar 

  17. Kaseko, M. S., & Ritchie, S. G. (1993). A neural network-based methodology for pavement crack detection and classification. Transportation Research Part C: Emerging Technologies, 1(4), 275–291.

    Article  Google Scholar 

  18. Gagarin, N., Flood, I., & Albrecht, P. (1994). Computing truck attributes with artificial neural networks. Journal of Computing in Civil Engineering, 8(2), 179–200.

    Article  Google Scholar 

  19. Cal, Y. (1995). Soil classification by neural network. Advances in Engineering Software, 22(2), 95–97.

    Article  Google Scholar 

  20. Roberts, C. A., & Attoh-Okine, N. O. (1998). A comparative analysis of two artificial neural networks using pavement performance prediction. Computer-Aided Civil and Infrastructure Engineering, 13(5), 339–348.

    Article  Google Scholar 

  21. Attoh-Okine, N. O. (2001). Grouping pavement condition variables for performance modeling using self-organizing maps. Computer-Aided Civil and Infrastructure Engineering, 16(2), 112–125.

    Article  Google Scholar 

  22. Khuntia, S., Das, A. K., Mohanty, M., & Panda, M. (2014). Prediction of Marshall parameters of modified bituminous mixtures using artificial intelligence techniques. International Journal of Transportation Science and Technology, 3(3), 211–227.

    Article  Google Scholar 

  23. Othman, K. (2021). Deep neural network models for the prediction of the aggregate base course compaction parameters. Designs, 5(4), 78.

    Article  MathSciNet  Google Scholar 

  24. Othman, K., & Abdelwahab, H. (2021). Prediction of the soil compaction parameters using deep neural networks. In Transportation Infrastructure Geotechnology (pp. 1–18).

  25. Nguyen, H. L., Le, T. H., Pham, C. T., Le, T. T., Ho, L. S., Le, V. M., Pham, B. T., & Ly, H. B. (2019). Development of hybrid artificial intelligence approaches and a support vector machine algorithm for predicting the Marshall parameters of stone matrix asphalt. Applied Sciences, 9(15), 3172.

    Article  Google Scholar 

  26. Iskender, E., Aksoy, A., Özşahin, Ş, Kahraman, H. T., & Konak, S. D. (2018). Artificial neural network-based new methodology for modeling of asphalt mixtures and comparison with IKE Method. Journal of Investigations on Engineering and Technology, 1(2), 1–13.

    Google Scholar 

  27. Fadhil, T. H., Ahmed, T. M., & Al Mashhadany, Y. I. (2021). Application of artificial neural networks as design tool for hot mix asphalt. International Journal of Pavement Research and Technology, 15, 269–283.

    Article  Google Scholar 

  28. Azarhoosh, A. (2021). Modeling Marshall test results of hot mix asphalt using nonlinear genetic programming techniques. AUT Journal of Civil Engineering, 5(1), 11–11.

    Google Scholar 

  29. Keskin, M., & Karacasu, M. (2021). Artificial neural network modelling for asphalt concrete samples with boron waste modification. Journal of Engineering Research. https://doi.org/10.36909/jer.8124

    Article  Google Scholar 

  30. Sebaaly, H., Varma, S., & Maina, J. W. (2018). Optimizing asphalt mix design process using artificial neural network and genetic algorithm. Construction and Building Materials, 168, 660–670.

    Article  Google Scholar 

  31. Shah, S. A. R., Anwar, M. K., Arshad, H., Qurashi, M. A., Nisar, A., Khan, A. N., & Waseem, M. (2020). Marshall stability and flow analysis of asphalt concrete under progressive temperature conditions: An application of advance decision-making approach. Construction and Building Materials, 262, 120756.

    Article  Google Scholar 

  32. Zhang, W., Khan, A., Huyan, J., Zhong, J., Peng, T., & Cheng, H. (2021). Predicting Marshall parameters of flexible pavement using support vector machine and genetic programming. Construction and Building Materials, 306, 124924.

    Article  Google Scholar 

  33. Putri, H. O., Zulkifli, & Pratama, D. Y. (2021). The effect of addition plastic waste on mechanical and thermal properties of asphalt using artificial neural network. In AIP Conference Proceedings (Vol. 2384, No. 1, p. 060002). AIP Publishing LLC.

  34. Mistry, R., & Roy, T. K. (2020). Predicting Marshall stability and flow of bituminous mix containing waste fillers by the adaptive neuro-fuzzy inference system. Revista de la Construcción, 19(2), 209–219.

    Article  Google Scholar 

  35. Baldo, N., Manthos, E., & Miani, M. (2019). Stiffness modulus and marshall parameters of hot mix asphalts: Laboratory data modeling by artificial neural networks characterized by cross-validation. Applied Sciences, 9(17), 3502.

    Article  Google Scholar 

  36. Azarhoosh, A., & Pouresmaeil, S. (2020). Prediction of Marshall mix design parameters in flexible pavements using genetic programming. Arabian Journal for Science and Engineering, 45(10), 8427–8441.

    Article  Google Scholar 

  37. Le, T. H., Nguyen, H. L., Pham, C. T., Hoang, H. G. T., & Nguyen, T. A. (2022). Development of artificial neural network model for prediction of Marshall parameters of stone mastic asphalt. In CIGOS 2021, Emerging Technologies and Applications for Green Infrastructure (pp. 1795–1803). Springer, Singapore.

  38. Upadhya, A., Thakur, M. S., Sharma, N., & Sihag, P. (2021). Assessment of soft computing-based techniques for the prediction of marshall stability of asphalt concrete reinforced with glass fiber. International Journal of Pavement Research and Technology. https://doi.org/10.1007/s42947-021-00094-2

    Article  Google Scholar 

  39. Androjić, I., & Marović, I. (2017). Development of artificial neural network and multiple linear regression models in the prediction process of the hot mix asphalt properties. Canadian Journal of Civil Engineering, 44(12), 994–1004.

    Article  Google Scholar 

  40. Sangsefidi, E., Ziari, H., & Sangsefidi, M. (2016). The effect of aggregate gradation limits consideration on performance properties and mixture design parameters of hot mix asphalt. KSCE Journal of Civil Engineering, 20(1), 385–392.

    Article  Google Scholar 

  41. Afaf, A. H. M. (2014). Effect of aggregate gradation and type on hot asphalt concrete mix properties. Journal of Engineering Sciences, 42(3), 567–574.

    Google Scholar 

  42. Ridolfi, D. V. (1998). Effect of aggregate gradation on performance characteristics of hot mix asphalt. University of Nevada.

    Google Scholar 

  43. Ahlrich, R. C. (1996). Influence of aggregate gradation and particle shape/texture on permanent deformation of hot mix asphalt pavements. Army Engineer Waterways Experiment Station Vicksburg MS Geotechnical Lab.

  44. Button, J. W., Perdomo, D., & Lytton, R. L. (1990). Influence of aggregate on rutting in asphalt concrete pavements. Transportation Research Record, 1259, 141–152.

    Google Scholar 

  45. Stakston, A. D., & Bahia, H. U. (2003). The effect of fine aggregate angularity, asphalt content and performance graded asphalts on hot mix asphalt performance (Vol. 92, No. 45–98). Wisconsin Highway Research Program.

  46. Bissada, A. F. (1984). Resistance to compaction of asphalt paving mixtures and its relationship to stiffness. ASTM International.

  47. El-Basyouny, M., & Mamlouk, M. S. (1999, January). Effect of aggregate gradation on the rutting potential of Superpave mixes. In 78th Annual Meeting of the Transportation Research Board. Washington, DC.

  48. Othman, K. M. M., & Abdelwahab, H. (2021). Prediction of the optimum asphalt content using artificial neural networks. Metallurgical and Materials Engineering, 27(2), 227–242.

    Google Scholar 

  49. ECP (Egyptian Code Provisions) ECP (104/4). (2008). Egyptian code for urban and rural roads. Part (4): road material and its tests. Housing and Building National Research Center, Cairo, Egypt (2008)

  50. Othman, K. (2021). Evaluation of the hot asphalt mix aggregate gradation using Bailey method: A state-of-the-art. JES. Journal of Engineering Sciences, 49(4), 446–475.

    Article  Google Scholar 

  51. Highway Technical Specifications (2006). General Directorate of Highways, Item No. 170/2, Ankara, Turkey.

  52. Haykin, S. (1999). Neural networks: a comprehensive foundation. 1999. Mc Millan, New Jersey, 1–24.

  53. Goodfellow, I., Bengio, Y., & Courville, A. (2017). Deep learning (adaptive computation and machine learning series). Cambridge Massachusetts (pp. 321–359).

  54. Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 738). Springer.

  55. Prechelt, L. (1998). Early stopping-but when?. In Neural networks: Tricks of the trade (pp. 55–69). Springer.

  56. Hussain, F., Ali, Y., & Irfan, M. (2021). Quantifying the differential phase angle behaviour of asphalt concrete mixtures using artificial neural networks. International Journal of Pavement Research and Technology. https://doi.org/10.1007/s42947-021-00042-0

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

(KO) literature search and review, research methodology, data preparation, data analysis, manuscript writing and reviewing.

Corresponding author

Correspondence to Kareem Othman.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othman, K. Artificial Neural Network Models for the Estimation of the Optimum Asphalt Content of Asphalt Mixtures. Int. J. Pavement Res. Technol. 16, 1059–1071 (2023). https://doi.org/10.1007/s42947-022-00179-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-022-00179-6

Keywords

Navigation