Skip to main content
Log in

Synergistic Effect of Hydrated Lime and Warm Mix Asphalt Additive on Properties of Recycled Asphalt Mixture Subjected to Laboratory Ageing

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

Reclaimed Asphalt Pavement (RAP) is often used with Warm Mix Asphalt (WMA) additive to reduce the production temperature and limit emission at the asphalt plant and worksite. Despite sustainable utilization of RAP, the long-term performance of recycled mix is still quite concerning, and thus research focus on the risk of premature pavement distress. This study is a novel approach to examine the individual and the combined effect of hydrated lime and a warm mix additive (Sasobit) on the long-term performance of the recycled mix. The recycled mixture is comprised of 50% RAP in this study. The study simulated short-term ageing and long-term ageing as per the standard AASTHO R30 ageing protocols on the recycled mix. The properties of recycled mixtures were investigated by Marshall stability, indirect tensile strength, moisture susceptibility, rutting, ravelling resistance, stiffness modulus, and fatigue cracking test. Laboratory findings suggest that the recycled control mix is highly affected by the long-term ageing concerning higher moisture susceptibility, lower fatigue, and cracking resistance properties. However, the individual presence of the additive limits the extent of ageing, where hydrated lime acted as a multifunctional additive, and warm mix additive decreased the moisture and rutting resistance of the mixture in long-term ageing. But it is interesting to note that mix treated with both the additives produce considerable performance enhancement by lowering the ageing and simultaneously depicts higher fatigue and cracking resistance performance of the said mix. Such a result is attributed to the fact that hydrated lime and warm mix additive modify the oxidation kinetics of the mix positively and react with the oxidation products thereby rendering the mix free from deleterious effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ziari, H., Moniri, A., Bahri, P., & Saghafi, Y. (2019). The effect of rejuvenators on the aging resistance of recycled asphalt mixtures. Construction and Building Materials, 224, 89–98. https://doi.org/10.1016/j.conbuildmat.2019.06.181

    Article  Google Scholar 

  2. Singh, S., Monu, K., & Ransinchung, G. D. R. N. (2019). Laboratory investigation of RAP for various layers of flexible and concrete pavement. International Journal of Pavement Engineering, 21(14), 1780–1793. https://doi.org/10.1080/10298436.2019.1567920

    Article  Google Scholar 

  3. Guo, N., You, Z., Zhao, Y., Tan, Y., & Diab, A. (2014). Laboratory performance of warm mix asphalt containing recycled asphalt mixtures. Construction and Building Materials, 64, 141–149. https://doi.org/10.1016/j.conbuildmat.2014.04.002

    Article  Google Scholar 

  4. Haghshenas, H., Nabizadeh, H., Kim, Y.R., Santosh, K. (2016). Research on high-rap asphalt mixtures with rejuvenators and WMA additives, Nebraska department of Transportation research reports.

  5. Zhang, W., Tang, J., Dong, Z., Ma, T., Akber, M. A., Huang, X., Zhu, J., & Luan, Y. (2020). Performance characterization of recycled-asphalt pavement with stabilized rubber-modified asphalt using balanced mix design method. Journal of Materials in Civil Engineering, 32(12), 04020387. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003486

    Article  Google Scholar 

  6. Kumari, M., Ransinchung, G. D. R. N., & Singh, S. (2018). A laboratory investigation on Dense Bituminous Macadam containing different fractions of coarse and fine RAP. Construction and Building Materials, 191, 655–666. https://doi.org/10.1016/j.conbuildmat.2020.121466

    Article  Google Scholar 

  7. Al-Qadi, I. L., Wu, S., Lippert, D. L., Ozer, H., Barry, M. K., & Safi, F. R. (2017). Impact of high recycled mixed on HMA overlay crack development rate. Road Materials and Pavement Design, 18(sup4), 311–327. https://doi.org/10.1080/14680629.2017.1389076

    Article  Google Scholar 

  8. Su, K., Hachiya, Y., & Maekawa, R. (2009). Study on recycled asphalt concrete for use in surface course in airport pavement. Resources, Conservation and Recycling, 54(1), 37–44. https://doi.org/10.1016/j.resconrec.2009.06.003

    Article  Google Scholar 

  9. Monu, K., Ransinchung, G. D., & Singh, S. (2019). Effect of long-term ageing on properties of RAP inclusive WMA mixes. Construction and Building Materials, 206, 483–493. https://doi.org/10.1016/j.conbuildmat.2019.02.087

    Article  Google Scholar 

  10. Walubita, L.F., Martin, A. E., Jung, S. H., Glover, C. J., Park, E. S. (2006). Application of calibrated mechanistic fatigue analysis with aging effects. No. FHWA/TX-06/0-4468-3.

  11. Vallerga, B.A. (1981). Pavement deficiencies related to asphalt durability. In Association of Asphalt Paving Technologists Proceedings, vol. 50.

  12. Alamdary, Y. A., Singh, S., & Baaj, H. (2019). Laboratory simulation of the impact of solar radiation and moisture on long-term age conditioning of asphalt mixes. Road Materials and Pavement Design, 20(sup1), S521–S532. https://doi.org/10.1080/14680629.2019.1587496

    Article  Google Scholar 

  13. Handle, F., Harir, M., Füssl, J., Koyun, A. N., Grossegger, D., Hertkorn, N., Eberhardsteiner, L., et al. (2017). Tracking aging of bitumen and its saturate, aromatic, resin, and asphaltene fractions using high-field Fourier transform ion cyclotron resonance mass spectrometry. Energy & Fuels, 31(5), 4771–4779. https://doi.org/10.1021/acs.energyfuels.6b03396

    Article  Google Scholar 

  14. Xu, S., Li, L., Yu, J., Zhang, C., Zhou, J., & Sun, Y. (2015). Investigation of the ultraviolet aging resistance of organic layered double hydroxides modified bitumen. Construction and Building Materials, 96, 127–134. https://doi.org/10.1016/j.conbuildmat.2015.08.019

    Article  Google Scholar 

  15. Zhao, X., Wang, S., Wang, Q., & Yao, H. (2016). Rheological and structural evolution of SBS modified asphalts under natural weathering. Fuel, 184, 242–247. https://doi.org/10.1016/j.fuel.2016.07.018

    Article  Google Scholar 

  16. Durrieu, F., Farcas, F., & Mouillet, V. (2007). The influence of UV aging of a styrene/butadiene/styrene modified bitumen: Comparison between laboratory and on site aging. Fuel, 86(10–11), 1446–1451.

    Article  Google Scholar 

  17. Zhu, H., Xu, G., Gong, M., & Yang, J. (2017). Recycling long-term-aged asphalts using bio-binder/plasticizer-based rejuvenator. Construction and Building Materials, 147, 117–129. https://doi.org/10.1016/j.conbuildmat.2017.04.066

    Article  Google Scholar 

  18. Abbas, A., Choi, B. C., Masad, E., & Papagiannakis, T. (2002). The influence of laboratory aging method on the rheological properties of asphalt binders. Journal of Testing and Evaluation, 30(2), 171–176.

    Article  Google Scholar 

  19. Said, S. F. (2005). Aging effect on mechanical characteristics of bituminous mixtures. Transportation Research Record, 1901(1), 1–9. https://doi.org/10.1177/0361198105190100101

    Article  Google Scholar 

  20. Walubita, L.F., Martin, A. E., Jung, S. H., Glover, C. J., Park, E.S., Chowdhury, A., Lytton, R.L. (2005). Comparison of fatigue analysis approaches for two hot mix asphalt concrete (HMAC) mixtures, Texas Transportation Institute, College Station, TX, USA.

  21. Airey, G. D., Rahimzadeh, B., & Collop, A. C. (2004). Linear rheological behavior of bituminous paving materials. Journal of Materials in Civil Engineering, 16(3), 212–220. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:3(212)

    Article  Google Scholar 

  22. Baek, C., Underwood, B. S., & Kim, Y. R. (2012). Effects of oxidative aging on asphalt mixture properties. Transportation Research Record, 2296(1), 77–85. https://doi.org/10.3141/2296-08

    Article  Google Scholar 

  23. Petersen, J.C., Plancher, H., Harnsberger, P. M. (1987). Lime treatment of asphalt to reduce age hardening and improve flow properties, In Association of Asphalt Paving Technologists Proceedings Technical Sessions, 1987, Reno, Nevada, USA, vol. 56.

  24. Plancher, H., Green, E. L., Petersen, J. C. (1976). Reduction of oxidative hardening of asphalts by treatment with hydrated lime--a mechanistic study. In Association of Asphalt Paving Technologists Proc, vol. 45.

  25. Gundla, A., Medina, J., Gudipudi, P., Stevens, R., Salim, R., Zeiada, W., & Underwood, B. S. (2016). Investigation of aging in hydrated lime and portland cement modified asphalt concrete at multiple length scales. Journal of Materials in Civil Engineering, 28(5), 04015205.

    Article  Google Scholar 

  26. Rasouli, A., Kavussi, A., Qazizadeh, M. J., & Taghikhani, A. H. (2018). Evaluating the effect of laboratory aging on fatigue behavior of asphalt mixtures containing hydrated lime. Construction and Building Materials, 164, 655–662. https://doi.org/10.1016/j.conbuildmat.2018.01.003

    Article  Google Scholar 

  27. Kim, S., Shen, J., Lee, S., Kim, Y., & Kim, K. W. (2019). Examination of physical property degradation due to severe short-term ageing and effect of hydrated lime as antioxidant in asphalt mixture. Road Materials and Pavement Design, 20(7), 1638–1652. https://doi.org/10.1080/14680629.2018.1473281

    Article  Google Scholar 

  28. Chachas, C.V., Liddle, W.J., Peterson, D.E., Wiley, M.L. (1971). Use of hydrated lime in bituminous mixtures to decrease hardening of the asphalt cement, Salt Lake City, UT: Utah State Highway Department. (Report No. PB 213 170).

  29. European Lime Association. (2011). Hydrated lime; a proven additive for durable asphalt pavements-critical literature review. In Asphalt Task Force Report, Brussels, Belgium.

  30. Sebaaly, P.E., Little, D.N., Epps, J.A. (2006). The benefits of hydrated lime in hot mix asphalt.

  31. Kaseer, F., Yin, F., Arámbula-Mercado, E., & Martin, A. E. (2017). Stiffness characterization of asphalt mixtures with high recycled material content and recycling agents. Transportation Research Record, 2633(1), 58–68. https://doi.org/10.3141/2633-08

    Article  Google Scholar 

  32. Xiao, F., Punith, V. S., Amirkhanian, S. N., & Thodesen, C. (2013). Improved resistance of long-term aged warm-mix asphalt to moisture damage containing moist aggregates. Journal of Materials in Civil Engineering, 25(7), 913–922. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000567

    Article  Google Scholar 

  33. Omari, I., Aggarwal, V., & Hesp, S. (2016). Investigation of two warm mix asphalt additives. International Journal of Pavement Research and Technology, 9(2), 83–88. https://doi.org/10.1016/j.ijprt.2016.02.001

    Article  Google Scholar 

  34. Wang, D., Falchetto, A. C., Poulikakos, L., Hofko, B., & Porot, L. (2019). RILEM TC 252-CMB report: Rheological modeling of asphalt binder under different short and long-term aging temperatures. Materials and Structures, 52(4), 1–12. https://doi.org/10.1617/s11527-019-1371-8

    Article  Google Scholar 

  35. Hofko, B., Cannone-Falchetto, A., Grenfell, J., Huber, L., Lu, X., Porot, L., Poulikakos, L. D., & You, Z. (2017). Effect of short-term ageing temperature on bitumen properties. Road Materials and Pavement Design, 18(sup2), 108–117. https://doi.org/10.1080/14680629.2017.1304268

    Article  Google Scholar 

  36. Guo, M., Liu, H., Jiao, Y., Mo, L., Tan, Y., Wang, D., & Liang, M. (2020). Effect of WMA-RAP technology on pavement performance of asphalt mixture: A state-of-the-art review. Journal of Cleaner Production, 266, 121704. https://doi.org/10.1016/j.jclepro.2020.121704

    Article  Google Scholar 

  37. Gandhi, T., Rogers, W., & Amirkhanian, S. (2010). Laboratory evaluation of warm mix asphalt ageing characteristics. International Journal of Pavement Engineering, 11(2), 133–142. https://doi.org/10.1080/10298430903033339

    Article  Google Scholar 

  38. Lee, S. J., Amirkhanian, S. N., Park, N. W., & Kim, K. W. (2009). Characterization of warm mix asphalt binders containing artificially long-term aged binders. Construction and Building Materials, 23(6), 2371–2379. https://doi.org/10.1016/j.conbuildmat.2008.11.005

    Article  Google Scholar 

  39. Jamshidi, A., Hamzah, M. O., & You, Z. (2013). Performance of warm mix asphalt containing Sasobit®: State-of-the-art. Construction and Building Materials, 38, 530–553. https://doi.org/10.1016/j.conbuildmat.2012.08.015

    Article  Google Scholar 

  40. Ozer, H., Al-Qadi, I. L., Singhvi, P., Khan, T., Rivera-Perez, J., & El-Khatib, A. (2016). Fracture characterization of asphalt mixtures with high recycled content using Illinois semicircular bending test method and flexibility index. Transportation Research Record, 2575(1), 130–137.

    Article  Google Scholar 

  41. Tran, N.H., Taylor, A., Willis, R. (2012). Effect of rejuvenator on performance properties of HMA mixtures with high RAP and RAS contents, NCAT Report, pp. 12–105.

  42. Mogawer, W., Bennert, T., Daniel, J. S., Bonaquist, R., Austerman, A., & Booshehrian, A. (2012). Performance characteristics of plant produced high RAP mixtures. Road Materials and Pavement Design, 13(sup1), 183–208.

    Article  Google Scholar 

  43. Shu, X., Huang, B., & Vukosavljevic, D. (2010). Evaluation of cracking resistance of recycled asphalt mixture using semi-circular bending test. Paving Materials and Pavement Analysis, 2010, 58–65.

    Article  Google Scholar 

  44. Kandhal, P. S., Rao, S. S., Watson, D. E., & Young, B. (1995). Performance of recycled hot mix asphalt mixtures. Auburn. National Center for Asphalt Technology, 7(1), 28–45.

    Google Scholar 

  45. Dinh, B. H., Park, D. W., & Le, T. H. M. (2018). Effect of rejuvenators on the crack healing performance of recycled asphalt pavement by induction heating. Construction and building materials, 164, 246–254. https://doi.org/10.1016/j.conbuildmat.2017.12.193

    Article  Google Scholar 

  46. Zhang, J., Guo, C., Chen, T., Zhang, W., Yao, K., Fan, C., Liang, M., Guo, C., & Yao, Z. (2021). Evaluation on the mechanical performance of recycled asphalt mixtures incorporated with high percentage of RAP and self-developed rejuvenators. Construction and Building Materials, 269, 121337. https://doi.org/10.1016/j.conbuildmat.2020.121337

    Article  Google Scholar 

  47. Zhu, J., Alavi, M. Z., Harvey, J., Sun, L., & He, Y. (2017). Evaluating fatigue performance of fine aggregate matrix of asphalt mix containing recycled asphalt shingles. Construction and Building Materials, 139, 203–211. https://doi.org/10.1016/j.conbuildmat.2017.02.060

    Article  Google Scholar 

  48. Liu, Y., Wang, H., Tighe, S. L., Zhao, G., & You, Z. (2019). Effects of preheating conditions on performance and workability of hot in-place recycled asphalt mixtures. Construction and Building Materials, 226, 288–298. https://doi.org/10.1016/j.conbuildmat.2019.07.277

    Article  Google Scholar 

  49. Goli, H., & Latifi, M. (2020). Evaluation of the effect of moisture on behavior of warm mix asphalt (WMA) mixtures containing recycled asphalt pavement (RAP). Construction and Building Materials, 247, 118526. https://doi.org/10.1016/j.conbuildmat.2020.118526

    Article  Google Scholar 

  50. Fatemi, S., & Imaninasab, R. (2016). Performance evaluation of recycled asphalt mixtures by construction and demolition waste materials. Construction and building materials, 120, 450–456. https://doi.org/10.1016/j.conbuildmat.2016.05.117

    Article  Google Scholar 

  51. Hajj, E. Y., Sebaaly, P. E., & Shrestha, R. (2009). Laboratory evaluation of mixes containing recycled asphalt pavement (RAP). Road Materials and Pavement Design, 10(3), 495–517. https://doi.org/10.1080/14680629.2009.9690211

    Article  Google Scholar 

  52. Mallick, R. B., & Brown, E. R. (2004). An evaluation of superpave binder aging methods. International Journal of Pavement Engineering., 5(1), 9–18.

    Article  Google Scholar 

  53. Hintz, C., Velasquez, R., Li, Z., & Bahia, H. (2011). Effect of oxidative aging on binder fatigue performance. Journal of the Association of Asphalt Paving Technologists, 2011, 80.

    Google Scholar 

  54. Qiu, Y., Ding, H., & Zheng, P. (2020). Toward a better understanding of the low-temperature reversible aging phenomenon in asphalt binder. International Journal of Pavement Engineering., 18, 1.

    Google Scholar 

  55. Cong, P., Liu, N., Tian, Y., & Zhang, Y. (2016). Effects of long-term aging on the properties of asphalt binder containing diatoms. Construction and Building Materials., 123, 534–540.

    Article  Google Scholar 

  56. Rahmani, H., Shirmohammadi, H., & Hamedi, G. H. (2018). Effect of asphalt binder aging on thermodynamic parameters and its relationship with moisture sensitivity of asphalt mixes. Journal of Materials in Civil Engineering., 30(11), 04018278.

    Article  Google Scholar 

  57. ASTM D2172. (2005). Standard test methods for quantitative extraction of bitumen from bituminous paving mixtures. ASTM, West Conshohocken.

  58. MoRTH (Ministry of Road Transport and Highways). (2013). Specifications for road and bridge works (fifth revision). New Delhi, India: Indian Road Congress.

  59. IS: 73, Paving Bitumen-Specification (Second Revision). (2013).

  60. ASTM C110-20. (2020). Standard Test methods for physical testing of quicklime, hydrated lime, and limestone. ASTM, West Conshohocken.

  61. ASTM D6927-15. (2015). Standard test method for marshall stability and flow of asphalt mixtures. ASTM, West Conshohocken.

  62. Advanced Asphalt Technologies, LLC. (2011). A manual for design of hot mix asphalt with commentary (Vol. 673). Transportation Research Board.

  63. American Association of State Highway and Transportation Officials. (2002). Standard practice for mixture conditioning of hot-mix asphalt (HMA)., R 30, AASHTO, Washington D.C., USA.

  64. ASTM D6931-07. (2007). Standard test method for indirect tensile (IDT) strength of bituminous mixtures. ASTM, West Conshohocken.

  65. American Association of State Highway and Transportation Officials. (2007). Resistance of compacted bituminous mixture to moisture induced damage, T283, AASHTO, Washington DC.

  66. Xiao, F., Amirkhanian, S., & Juang, C. H. (2007). Rutting resistance of rubberized asphalt concrete pavements containing reclaimed asphalt pavement mixtures. Journal of Materials in Civil Engineering, 19(6), 475–483. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:6(475)

    Article  Google Scholar 

  67. Chen, J. S., Lin, C. H., Stein, E., & Hothan, J. (2004). Development of a mechanistic-empirical model to characterize rutting in flexible pavements. Journal of Transportation Engineering, 130(4), 519–525. https://doi.org/10.1061/(ASCE)0733-947X(2004)130:4(519)

    Article  Google Scholar 

  68. American Association of State Highway and Transportation Officials. (2015). Standard Method of Test for Hamburg Wheel-Track Testing of Compacted Hot Mix Asphalt (HMA). T324-14, AASHTO, Washington DC.

  69. Saboo, N., & Kumar, P. (2016). Performance characterization of polymer modified asphalt binders and mixes. Advances in Civil Engineering. https://doi.org/10.1155/2016/5938270

    Article  Google Scholar 

  70. Kuttah, D. K., Sato, K., & Koga, C. (2015). Evaluating the dynamic stabilities of asphalt concrete mixtures incorporating plasterboard wastes. International Journal of Pavement Engineering, 16(10), 929–938. https://doi.org/10.1080/10298436.2014.973023

    Article  Google Scholar 

  71. American Association of State Highway and Transportation Officials, Determining the fatigue life of compacted Hot Mix Asphalt (HMA) subjected to repeated flexural bending. (2017). T321. AASHTO, Washington, DC.

  72. Saboo, N., Das, B. P., & Kumar, P. (2016). New phenomenological approach for modeling fatigue life of asphalt mixes. Construction and Building Materials, 121, 134–142. https://doi.org/10.1016/j.conbuildmat.2016.05.147

    Article  Google Scholar 

  73. Monismith, C. L., & Deacon, J. A. (1969). Fatigue of asphalt paving mixtures. Transportation Engineering Journal of ASCE, 95(2), 317–346.

    Article  Google Scholar 

  74. Modarres, A., & Bengar, P. A. (2019). Investigating the indirect tensile stiffness, toughness and fatigue life of hot mix asphalt containing copper slag powder. International Journal of Pavement Engineering, 20(8), 977–985. https://doi.org/10.1080/10298436.2017.1373390

    Article  Google Scholar 

  75. ASTM D7064. (2013). Standard practice for open-graded friction course (OGFC) Mix Design. In ASTM, West Conshohocken.

  76. Zoorob, S. E., & Suparma, L. B. (2000). Laboratory design and investigation of the properties of continuously graded Asphaltic concrete containing recycled plastics aggregate replacement (Plastiphalt). Cement and Concrete Composites, 22(4), 233–242. https://doi.org/10.1016/S0958-9465(00)00026-3

    Article  Google Scholar 

  77. ASTM D4123-82. (1995). Standard test method for indirect tension test for resilient modulus of bituminous mixtures. In ASTM, West Conshohocken.

  78. Islam, S. S., Ransinchung, G. D., & Choudhary, J. (2021). Analyzing the effect of waste jarosite as an alternative filler on the engineering properties of asphalt mixes. Construction and Building Materials, 270, 121466. https://doi.org/10.1016/j.conbuildmat.2020.121466

    Article  Google Scholar 

  79. Choudhary, J., Kumar, B., & Gupta, A. (2020). Feasible utilization of waste limestone sludge as filler in bituminous concrete. Construction and Building Materials, 239, 117781. https://doi.org/10.1016/j.conbuildmat.2019.117781

    Article  Google Scholar 

  80. Bouron, S., Hammoum, F., Ruat, H., Métais, P., & Lesueur, D. (2021). Improving the durability of asphalt mixtures with hydrated lime: Field results from highway A84. Case Studies in Construction Materials, 14, e00551. https://doi.org/10.1016/j.cscm.2021.e00551

    Article  Google Scholar 

  81. Lesueur, D., Petit, J., & Ritter, H. J. (2013). The mechanisms of hydrated lime modification of asphalt mixtures: A state-of-the-art review. Road materials and pavement design, 14(1), 1–16. https://doi.org/10.1080/14680629.2012.743669

    Article  Google Scholar 

  82. Johansson, L. S., Branthaver, J. F., & Robertson, R. E. (1995). A study of rheological properties of lime treated paving asphalts aged at 60 °C in a pressure aging vessel. Journal of Fuel Science and Technology International, 13(10), 1317–1343.

    Article  Google Scholar 

  83. Ishai, I., Craus, J. (1977). Effect of the filler on aggregate-bitumen adhesion properties in bituminous mixtures. In Association of asphalt paving technologists proc (vol. 46).

  84. Lesueur, D., & Petit, J. (2013). Hans-Josef Ritter, The mechanisms of hydrated lime modification of asphalt mixtures: A state-of-the-art review. Road Materials and Pavement Design, 14(1), 1–16. https://doi.org/10.1080/14680629.2012.743669

    Article  Google Scholar 

  85. Lesueur, D., & Little, D. N. (1999). Effect of hydrated lime on rheology, fracture, and aging of bitumen. Transportation Research Record, 1661(1), 93–105.

    Article  Google Scholar 

  86. Masoudi, S., Abtahi, S. M., & Goli, A. (2017). Evaluation of electric arc furnace steel slag coarse aggregate in warm mix asphalt subjected to long-term aging. Construction and Building Materials, 135, 260–266. https://doi.org/10.1016/j.conbuildmat.2016.12.177

    Article  Google Scholar 

  87. Pasandín, A. R., Pérez, I., Ramírez, A., & Cano, M. M. (2016). Moisture damage resistance of hot-mix asphalt made with paper industry wastes as filler. Journal of Cleaner Production, 112, 853–862. https://doi.org/10.1016/j.jclepro.2015.06.016

    Article  Google Scholar 

  88. Pasetto, M., & Baldo, N. (2017). Dissipated energy analysis of four-point bending test on asphalt concretes made with steel slag and RAP. International journal of pavement research and technology, 10(5), 446–453.

    Article  Google Scholar 

  89. Kakade, V. B., Reddy, M. A., & Reddy, K. S. (2016). Effect of aging on fatigue performance of hydrated lime modified bituminous mixes. Construction and Building Materials, 113, 1034–1043. https://doi.org/10.1016/j.conbuildmat.2016.03.066

    Article  Google Scholar 

  90. Daniel, J. S., Gibson, N., Tarbox, S., Copeland, A., & Andriescu, A. (2013). Effect of long-term ageing on RAP mixtures: Laboratory evaluation of plant-produced mixtures. Road Materials and Pavement Design, 14(sup2), 173–192. https://doi.org/10.1080/14680629.2013.812840

    Article  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the Quality Improvement Programme, All India Council for Technical Education (AICTE) and Aliah University, Kolkata, for research support at the Indian Institute of Technology, Roorkee.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AM. Methodology: AM. Investigation: AM. Data Curation & Formal Analysis: AM. Supervision: GDRRN. Writing—Original Draft: AM & SSI. Writing—Review & Editing: AM and SSI. Proof reading: GDRRN.

Corresponding author

Correspondence to G. D. Ransinchung R.N..

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, A., Islam, S.S. & Ransinchung R.N., G.D. Synergistic Effect of Hydrated Lime and Warm Mix Asphalt Additive on Properties of Recycled Asphalt Mixture Subjected to Laboratory Ageing. Int. J. Pavement Res. Technol. 16, 968–982 (2023). https://doi.org/10.1007/s42947-022-00173-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-022-00173-y

Keywords

Navigation