Skip to main content

Advertisement

Log in

Recent Advances in Hybrid Energy Harvesting Technologies Using Roadway Pavements: A Review of the Technical Possibility of Using Piezo-thermoelectrical Combinations

  • Review
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

Currently, we are facing an energy transition due to pollution and depletion issues related to fossil energy sources. Among all the efforts to develop alternative green energy sources, there are other energy sources that remain unexplored. Ambient energies present on roadway pavements are one example. Thermal energy from solar radiation and the mechanical vibrations induced by passing vehicles are promising ambient energy sources available from roadway pavements. The aim of this study is to examine the existing energy harvesting systems for these ambient energy sources. This paper also summarizes existing study efforts on hybrid (thermal and mechanical vibration) energy harvesting systems in general. This hybrid system can overcome the limitations of a single source-based system as intermittent and low power generation. Energy harvesting technologies can generate green energy without negative environmental impact during the conversion process. This article solely contains references to studies examining the technological feasibility of a road energy harvesting project. Despite their importance, this bibliographic research did not include attempts to address costs, life cycle analyses, or the impact of the systems on the road structure. The reasons for this omission are due to the difficulty of obtaining this information in the scientific literature for comparison with the suggested systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Höök, M., & Tang, X. (2013). Depletion of fossil fuels and anthropogenic climate change: A review. Energy Policy, 52, 797. https://doi.org/10.1016/j.enpol.2012.10.046 Special Section: Transition Pathways to a Low Carbon Economy.

    Article  Google Scholar 

  2. Fantazzini, D., Höök, M., & Angelantoni, A. (2011). Global oil risks in the early 21st century. Energy Policy, 39(12), 7865. https://doi.org/10.1016/j.enpol.2011.09.035 Clean Cooking Fuels and Technologies in Developing Economies.

    Article  Google Scholar 

  3. Abas, N., Kalair, A., & Khan, N. (2015). Review of fossil fuels and future energy technologies. Futures, 69, 31. https://doi.org/10.1016/j.futures.2015.03.003

    Article  Google Scholar 

  4. Ediger, V. (2019). An integrated review and analysis of multi-energy transition from fossil fuels to renewables. Energy Procedia, 156, 2. https://doi.org/10.1016/j.egypro.2018.11.073 5th International Conference on Power and Energy Systems Engineering (CPESE 2018).

    Article  Google Scholar 

  5. Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38. https://doi.org/10.1016/j.esr.2019.01.006

    Article  Google Scholar 

  6. Mohsin, M., Abbas, Q., Zhang, J., Ikram, M., & Iqbal, N. (2019). Integrated effect of energy consumption, economic development, and population growth on CO2 based environmental degradation: a case of transport sector. Environmental Science and Pollution Research, 26(32), 32824.

    Article  Google Scholar 

  7. Zhang, Q., Ou, X., Yan, X., & Zhang, X. (2017). Electric vehicle market penetration and impacts on energy consumption and CO\(_2\) emission in the future: Beijing Case. Energies, 10(2). https://doi.org/10.3390/en10020228. https://www.mdpi.com/1996-1073/10/2/228

  8. Walubita, L. F., Sohoulande Djebou, D. C., Faruk, A. N., Lee, S. I., Dessouky, S., & Hu, X. (2018). Prospective of societal and environmental benefits of piezoelectric technology in road energy harvesting. Sustainability, 10(2). https://doi.org/10.3390/su10020383. https://www.mdpi.com/2071-1050/10/2/383

  9. Pei, J., Zhou, B., & Lyu, L. (2019). e-Road: The largest energy supply of the future? Applied Energy, 241, 174. https://doi.org/10.1016/j.apenergy.2019.03.033

    Article  Google Scholar 

  10. Anting, N., Din, M. F. M., Iwao, K., Ponraj, M., Jungan, K., Yong, L. Y., & Siang, A. J. L. M. (2017). Experimental evaluation of thermal performance of cool pavement material using waste tiles in tropical climate. Energy and Buildings, 142, 211. https://doi.org/10.1016/j.enbuild.2017.03.016

    Article  Google Scholar 

  11. Kleerekoper, L., van Esch, M., & Salcedo, T. B. (2012). How to make a city climate-proof, addressing the urban heat island effect. Resources, Conservation and Recycling, 64, 30. https://doi.org/10.1016/j.resconrec.2011.06.004 Climate Proofing Cities.

    Article  Google Scholar 

  12. Kaloush, K. E., Carlson, J. D., Golden, J. S., & Phelan, P. E. (2008) The thermal and radiative characteristics of concrete pavements in mitigating urban heat island effects. Global Institute of Sustainability. https://pdfs.semanticscholar.org/612b/0904123ad0038da1c16af9944da12f375f16.pdf

  13. Chiarelli, A., Al-Mohammedawi, A., Dawson, A., & García, A. (2017). Construction and configuration of convection-powered asphalt solar collectors for the reduction of urban temperatures. International Journal of Thermal Sciences, 112, 242. https://doi.org/10.1016/j.ijthermalsci.2016.10.012

    Article  Google Scholar 

  14. Chen, J., Wang, H., & Zhu, H. (2017). Analytical approach for evaluating temperature field of thermal modified asphalt pavement and urban heat island effect. Applied Thermal Engineering, 113, 739. https://doi.org/10.1016/j.applthermaleng.2016.11.080

    Article  Google Scholar 

  15. Gholikhani, M., Roshani, H., Dessouky, S., & Papagiannakis, A. (2020). A critical review of roadway energy harvesting technologies. Applied Energy, 261, 114388. https://doi.org/10.1016/j.apenergy.2019.114388

    Article  Google Scholar 

  16. Ahmad, S., Abdul Mujeebu, M., & Farooqi, M. .A. (2019). Energy harvesting from pavements and roadways: A comprehensive review of technologies, materials, and challenges. International Journal of Energy Research, 43(6), 1974. https://doi.org/10.1002/er.4350

    Article  Google Scholar 

  17. Gholikhani, M., Beheshti Shirazi, S. Y., Mabrouk, G. M., & Dessouky, S. (2021). Dual electromagnetic energy harvesting technology for sustainable transportation systems. Energy Conversion and Management, 230, 113804. https://doi.org/10.1016/j.enconman.2020.113804

    Article  Google Scholar 

  18. Dawson, A., Mallick, R., Hernandez, A. G., & Dehdezi, P. K. (2014). Energy harvesting from pavements, climate change, energy, sustainability and pavements (pp. 481–517). Springer. https://doi.org/10.1007/978-3-662-44719-2_18

    Book  Google Scholar 

  19. Mallick, R. B., Chen, B. L., & Bhowmick, S. (2009). Harvesting energy from asphalt pavements and reducing the heat island effect. International Journal of Sustainable Engineering, 2(3), 214. https://doi.org/10.1080/19397030903121950

    Article  Google Scholar 

  20. Santamouris, M. (2013). Using cool pavements as a mitigation strategy to fight urban heat island: A review of the actual developments. Renewable and Sustainable Energy Reviews, 26, 224. https://doi.org/10.1016/j.rser.2013.05.047

    Article  Google Scholar 

  21. Dezfooli, A. S., Nejad, F. M., Zakeri, H., & Kazemifard, S. (2017). Solar pavement: A new emerging technology. Solar Energy, 149, 272. https://doi.org/10.1016/j.solener.2017.04.016

    Article  Google Scholar 

  22. Shekhar, A., Kumaravel, V. K., Klerks, S., de Wit, S., Venugopal, P., Narayan, N., Bauer, P., Isabella, O., & Zeman, M. (2018). Harvesting roadway solar energy-performance of the installed infrastructure integrated PV bike path. IEEE Journal of Photovoltaics, 8(4), 1066. https://doi.org/10.1109/JPHOTOV.2018.2820998

    Article  Google Scholar 

  23. Gholikhani, M., Nasouri, R., Tahami, S. A., Legette, S., Dessouky, S., & Montoya, A. (2019). Harvesting kinetic energy from roadway pavement through an electromagnetic speed bump. Applied Energy, 250, 503. https://doi.org/10.1016/j.apenergy.2019.05.060

    Article  Google Scholar 

  24. Wang, L., Todaria, P., Pandey, A., O’Connor, J., Chernow, B., & Zuo, L. (2016). An electromagnetic speed bump energy harvester and its interactions with vehicles. IEEE/ASME Transactions on Mechatronics, 21(4), 1985–1994. https://doi.org/10.1109/tmech.2016.2546179. https://ieeexplore.ieee.org/document/7439847

  25. Datta, U., Dessouky, S., & Papagiannakis, A. T. (2017). Harvesting thermoelectric energy from asphalt pavements. Transportation Research Record: Journal of the Transportation Research Board, 2628(1), 12–22. https://doi.org/10.3141/2628-02

    Article  Google Scholar 

  26. Papagiannakis, A. T., Montoya, A., Dessouky, S., & Helffrich, J. (2017). Development and evaluation of piezoelectric prototypes for roadway energy harvesting. Journal of Energy Engineering, 143(5), 04017034. https://doi.org/10.1061/(asce)ey.1943-7897.0000467

    Article  Google Scholar 

  27. Efthymiou, C., Santamouris, M., Kolokotsa, D., & Koras, A. (2016). Development and testing of photovoltaic pavement for heat island mitigation. Solar Energy, 130, 148–160. https://doi.org/10.1016/j.solener.2016.01.054

    Article  Google Scholar 

  28. Abdal-kadhim, A. M. & Leong, K. S. (2019).Hybrid energy harvesting scheme using piezoelectric and thermoelectric for wireless sensor nodes. International Journal of Integrated Engineering, 11(1) (2019). https://publisher.uthm.edu.my/ojs/index.php/ijie/article/view/2348

  29. Oh, Y., Kwon, D. S., Eun, Y., Kim, W., Kim, M. O., Ko, H. J., & Kim, J. (2019). Flexible energy harvester with piezoelectric and thermoelectric hybrid mechanisms for sustainable harvesting. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(4), 691. https://doi.org/10.1007/s40684-019-00132-2

    Article  Google Scholar 

  30. Harzing, A. (2007). Publish or Perish, Publish or perish. https://harzing.com/resources/publish-or-perish

  31. Uchino, K. (2017). The development of piezoelectric materials and the new perspective. In Advanced piezoelectric materials - Second Edition - Science and Technology Woodhead Publishing in Materials (pp. 1–92). https://doi.org/10.1016/B978-0-08-102135-4.00001-1

  32. Mason, W. P. (1981). Piezoelectricity, its history and applications. The Journal of the Acoustical Society of America, 70(6), 1561. https://doi.org/10.1121/1.387221

    Article  MathSciNet  Google Scholar 

  33. Guo, L., & Lu, Q. (2017). Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements. Renewable and Sustainable Energy Reviews, 72, 761. https://doi.org/10.1016/j.rser.2017.01.090

    Article  Google Scholar 

  34. Nolas, G. S., Sharp, J., & Goldsmid, J. (2013). Thermoelectrics: Basic principles and new materials developments (Vol. 45). Springer Science & Business Media. https://doi.org/10.1007/2F978-3-662-04569-5

    Book  MATH  Google Scholar 

  35. MacDonald, D. K. C., & Tuomi, D. (1963). Thermoelectrics: Basic principles and new materials developments. Journal of The Electrochemical Society, 110(8), 206C. https://doi.org/10.1149/1.2425888

    Article  Google Scholar 

  36. Jella, V., Ippili, S., Eom, J. H., Kim, Y. J., Kim, H. J., & Yoon, S. G. (2018). A novel approach to ambient energy (thermoelectric, piezoelectric and solar-TPS) harvesting: Realization of a single structured TPS-fusion energy device using MAPbI3. Nano Energy, 52, 11. https://doi.org/10.1016/j.nanoen.2018.07.024

    Article  Google Scholar 

  37. Kim, H. S., Liu, W., Chen, G., Chu, C. W., & Ren, Z. (2015). Relationship between thermoelectric figure of merit and energy conversion efficiency. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.1510231112

    Article  Google Scholar 

  38. Jaziri, N., Boughamoura, A., Müller, J., Mezghani, B., Tounsi, F., & Ismail, M. (2019). A comprehensive review of thermoelectric generators: Technologies and common applications. Energy Reports. https://doi.org/10.1016/j.egyr.2019.12.011

    Article  Google Scholar 

  39. Zhao, H., Qin, L., & Ling, J. (2018). Synergistic performance of piezoelectric transducers and asphalt pavement. International Journal of Pavement Research and Technology, 11(4), 381. https://doi.org/10.1016/j.ijprt.2017.09.008 Innovations in Pavement and Material Characterization and Modeling.

    Article  Google Scholar 

  40. Hwang, S. J., Jung, H. J., Kim, J. H., Ahn, J. H., Song, D., Song, Y., Lee, H. L., Moon, S. P., Park, H., & Sung, T. H. (2015). Designing and manufacturing a piezoelectric tile for harvesting energy from footsteps. Current Applied Physics, 15(6), 669. https://doi.org/10.1016/j.cap.2015.02.009

    Article  Google Scholar 

  41. Shenck, N. S., & Paradiso, J. A. (2001). Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro, 21(3), 30. https://doi.org/10.1109/40.928763

    Article  Google Scholar 

  42. Lee, J., & Choi, B. (2014). Development of a piezoelectric energy harvesting system for implementing wireless sensors on the tires. Energy Conversion and Management, 78, 32. https://doi.org/10.1016/j.enconman.2013.09.054

    Article  Google Scholar 

  43. Abdelkefi, A., & Ghommem, M. (2013). Piezoelectric energy harvesting from morphing wing motions for micro air vehicles. Theoretical and Applied Mechanics Letters, 3(5), 052004. https://doi.org/10.1063/2.1305204

    Article  Google Scholar 

  44. Van den Ende, D., Van de Wiel, H., Groen, W., & Van der Zwaag, S. (2011). Direct strain energy harvesting in automobile tires using piezoelectric PZT-polymer composites. Smart Materials and Structures, 21(1), 052004. https://doi.org/10.1088/0964-1726/21/1/015011/pdf

    Article  Google Scholar 

  45. Papagiannakis, A., Dessouky, S., Montoya, A., & Roshani, H. (2016). Energy harvesting from roadways. Procedia Computer Science, 83, 758. https://doi.org/10.1016/j.procs.2016.04.164 (The 7th International Conference on Ambient Systems, Networks and Technologies (ANT 2016)/The 6th International Conference on Sustainable Energy Information Technology (SEIT-2016)/Affiliated Workshops)

  46. Khalili, M., Biten, A. B., Vishwakarma, G., Ahmed, S., & Papagiannakis, A. (2019). Electro-mechanical characterization of a piezoelectric energy harvester. Applied Energy, 253, 113585. https://doi.org/10.1016/j.apenergy.2019.113585

    Article  Google Scholar 

  47. Xu, T. B., Siochi, E. J., Kang, J. H., Zuo, L., Zhou, W., Tang, X., & Jiang, X. (2013). Energy harvesting using a PZT ceramic multilayer stack. Smart Materials and Structures, 22(6), 065015. https://doi.org/10.1088/0964-1726/22/6/065015

    Article  Google Scholar 

  48. Platt, S. R., Farritor, S., & Haider, H. (2005). On low-frequency electric power generation with PZT ceramics. IEEE/ASME Transactions on Mechatronics, 10(2), 240. https://doi.org/10.1109/TMECH.2005.844704

    Article  Google Scholar 

  49. Hehn, T., & Manoli, Y. (2015). Cmos circuits for piezoelectric energy harvesters, Springer Series in Advanced Microelectronics (vol. 38, p. 21). 10.1007/2F978-94-017-9288-2

  50. Guo, L., & Lu, Q. (2017). Modeling a new energy harvesting pavement system with experimental verification. Applied Energy, 208, 1071. https://doi.org/10.1016/j.apenergy.2017.09.045

    Article  Google Scholar 

  51. Wang, S., Wang, C., Yu, G., & Gao, Z. (2020). Development and performance of a piezoelectric energy conversion structure applied in pavement. Energy Conversion and Management, 207, 112571. https://doi.org/10.1016/j.enconman.2020.112571

    Article  Google Scholar 

  52. Wang, C., Wang, S., Gao, Z., & Wang, X. (2019). Applicability evaluation of embedded piezoelectric energy harvester applied in pavement structures. Applied Energy, 251, 113383. https://doi.org/10.1016/j.apenergy.2019.113383

    Article  Google Scholar 

  53. Guo, L., & Lu, Q. (2019). Numerical analysis of a new piezoelectric-based energy harvesting pavement system: Lessons from laboratory-based and field-based simulations. Applied Energy, 235, 963. https://doi.org/10.1016/j.apenergy.2018.11.037

    Article  Google Scholar 

  54. Roshani, H., Dessouky, S., Montoya, A., & Papagiannakis, A. (2015). Energy harvesting from asphalt pavement roadways vehicle-induced stresses: A feasibility study. Applied Energy, 182, 210–8.https://doi.org/10.1016/j.apenergy.2016.08.116

    Article  Google Scholar 

  55. Song, Y., Yang, C. H., Hong, S. K., Hwang, S. J., Kim, J. H., Choi, J. Y., Ryu, S. K., & Sung, T. H. (2016). Road energy harvester designed as a macro-power source using the piezoelectric effect. International Journal of Hydrogen Energy, 41(29), 12563. https://doi.org/10.1016/j.ijhydene.2016.04.149

    Article  Google Scholar 

  56. Xu, X., Cao, D., Yang, H., & He, M. (2018). Application of piezoelectric transducer in energy harvesting in pavement. International Journal of Pavement Research and Technology, 11(4), 388. https://doi.org/10.1016/j.ijprt.2017.09.011 Innovations in Pavement and Material Characterization and Modeling.

    Article  Google Scholar 

  57. Moure, A., Rodríguez, M. I., Rueda, S. H., Gonzalo, A., Rubio-Marcos, F., Cuadros, D. U., Pérez-Lepe, A., & Fernández, J. (2016). Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting. Energy Conversion and Management, 112, 246–253. https://doi.org/10.1016/j.enconman.2016.01.030

    Article  Google Scholar 

  58. Yao, L., Zhao, H. D., Dong, Z. Y., Sun, Y. F., & Gao, Y. F. (2012). Laboratory testing of piezoelectric bridge transducers for asphalt pavement energy harvesting. Key Engineering Materials, 492, 172–175. https://doi.org/10.4028/www.scientific.net/KEM.492.172

    Article  Google Scholar 

  59. Hongduo, Z., Luyao, Q., & Jianming, L. (2015). Test and analysis of bridge transducers for harvesting energy from asphalt pavement. International Journal of Transportation Science and Technology, 4(1), 17. https://doi.org/10.1260/2046-0430.4.1.17

    Article  Google Scholar 

  60. Li, C. (2015). Road performance of common piezoelectric transducer for asphalt pavement energy harvesting. Applied Mechanics and Materials, 744, 1491–1494. https://doi.org/10.4028/www.scientific.net/AMM.744-746.1491

    Article  Google Scholar 

  61. Kim, J., Lee, T. H., Song, Y., & Sung, T. H. (2017). Robust design optimization of fixed-fixed beam piezoelectric energy harvester considering manufacturing uncertainties. Sensors and Actuators A: Physical, 260, 236. https://doi.org/10.1016/j.sna.2017.02.031

    Article  Google Scholar 

  62. Yang, H., Wang, L., Hou, Y., Guo, M., Ye, Z., Tong, X., & Wang, D. (2017). Development in stacked-array-type piezoelectric energy harvester in asphalt pavement. Journal of Materials in Civil Engineering, 29(11), 04017224. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002079

    Article  Google Scholar 

  63. Yang, H., Wang, L., Zhou, B., Wei, Y., & Zhao, Q. (2018). A preliminary study on the highway piezoelectric power supply system. International Journal of Pavement Research and Technology, 11(2), 168. https://doi.org/10.1016/j.ijprt.2017.08.006

    Article  Google Scholar 

  64. Xu, X., Cao, D., Yang, H., & He, M. (2018). Application of piezoelectric transducer in energy harvesting in pavement. International Journal of Pavement Research and Technology, 11(4), 388. https://doi.org/10.1016/j.ijprt.2017.09.011

    Article  Google Scholar 

  65. Cafiso, S., Cuomo, M., Di Graziano, A., & Vecchio, C. (2013). Experimental analysis for piezoelectric transducers applications into roads pavements. Advanced Materials Research, 684, 253–257. https://doi.org/10.4028/www.scientific.net/AMR.684.253

    Article  Google Scholar 

  66. Kim, C. I., Kim, K. B., Jeon, J. H., Jeong, Y. H., Cho, J. H., Paik, J. H., Kang, I. S., Lee, M. Y., Choi, B. J., Cho, Y. B., et al. (2012). Development and evaluation of the road energy harvester using piezoelectric cantilevers. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 25(7), 511. https://doi.org/10.4313/JKEM.2012.25.7.511

    Article  Google Scholar 

  67. Xiong, H., Wang, L., Wang, D., & Druta, C. (2012). Piezoelectric energy harvesting from traffic induced deformation of pavements. International Journal of Pavement Research and Technology, 5(5), 333. https://doi.org/10.1063/1.4891169

    Article  Google Scholar 

  68. Jiang, X., Li, Y., Li, J., Wang, J., & Yao, J. (2014). Piezoelectric energy harvesting from traffic-induced pavement vibrations. Journal of Renewable and Sustainable Energy, 6(4), 043110. https://doi.org/10.1063/1.4891169

    Article  Google Scholar 

  69. Yang, C. H., Song, Y., Woo, M. S., Eom, J. H., Song, G. J., Kim, J. H., Kim, J., Lee, T. H., Choi, J. Y., & Sung, T. H. (2017). Feasibility study of impact-based piezoelectric road energy harvester for wireless sensor networks in smart highways. Sensors and Actuators A: Physical, 261, 317. https://doi.org/10.1016/j.sna.2017.04.025

    Article  Google Scholar 

  70. Shin, Y. H., Jung, I., Noh, M. S., Kim, J. H., Choi, J. Y., Kim, S., & Kang, C. Y. (2018). Piezoelectric polymer-based roadway energy harvesting via displacement amplification module. Applied Energy, 216, 741. https://doi.org/10.1016/j.apenergy.2018.02.074

    Article  Google Scholar 

  71. Jiang, X., Li, Y., Wang, J., & Li, J. (2014). Electromechanical modeling and experimental analysis of a compression-based piezoelectric vibration energy harvester. International Journal of Smart and Nano Materials, 5(3), 152. https://doi.org/10.1080/19475411.2014.919971

    Article  Google Scholar 

  72. Wischke, M., Masur, M., Kröner, M., & Woias, P. (2011). Vibration harvesting in traffic tunnels to power wireless sensor nodes. Smart Materials and Structures, 20(8), 085014. https://doi.org/10.1088/0964-1726/20/8/085014/meta

    Article  Google Scholar 

  73. Roshani, H., Jagtap, P., Dessouky, S., Montoya, A., & Papagiannakis, A. (2018). Theoretical and experimental evaluation of two roadway piezoelectric-based energy harvesting prototypes. Journal of Materials in Civil Engineering, 30(2), 04017264. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002112

    Article  Google Scholar 

  74. Zhao, S., & Erturk, A. (2013). Energy harvesting from harmonic and noise excitation of multilayer piezoelectric stacks: Modeling and experiment. Active and Passive Smart Structures and Integrated Systems, 8688, 86881Q. https://doi.org/10.1117/12.2009823

    Article  Google Scholar 

  75. Xiong, H., & Wang, L. (2016). Piezoelectric energy harvester for public roadway: On-site installation and evaluation. Applied Energy, 174, 101. https://doi.org/10.1016/j.apenergy.2016.04.031

    Article  Google Scholar 

  76. Kim, S., Shen, J., & Ahad, M. (2015). Piezoelectric-based energy harvesting technology for roadway sustainability. International Journal of Applied Science and Technology, 5(1). https://pdfs.semanticscholar.org/6fe6/2ac59ba974ac13c498a442239fc376db741e.pdf

  77. Yesner, G., Kuciej, M., Safari, A., Jasim, A., Wang, H., & Maher, A. (2016). Piezoelectric energy harvesting using a novel cymbal transducer design. In 2016 Joint IEEE International Symposium on the Applications of Ferroelectrics, European Conference on Application of Polar Dielectrics, and Piezoelectric Force Microscopy Workshop (ISAF/ECAPD/PFM) (pp. 1–4). IEEE. https://doi.org/10.1109/ISAF.2016.7578090

  78. Xiao, J., Zou, X., & Xu, W. (2017). ePave: A self-powered wireless sensor for smart and autonomous pavement. Sensors, 17(10), 2207. https://doi.org/10.3390/s17102207

    Article  Google Scholar 

  79. Papagiannakis, A., Montoya, A., Dessouky, S., & Helffrich, J. (2017). Development and evaluation of piezoelectric prototypes for roadway energy harvesting. Journal of Energy Engineering, 143(5), 04017034. https://doi.org/10.1061/28ASCE/29EY.1943-7897.0000467

    Article  Google Scholar 

  80. Hou, Y., Wang, L., Wang, D., Yang, H., Guo, M., Ye, Z., & Tong, X. (2017). A preliminary study on the IoT-based pavement monitoring platform based on the piezoelectric-cantilever-beam powered sensor. Advances in Materials Science and Engineering. https://doi.org/10.1155/2017/4576026

    Article  Google Scholar 

  81. Jasim, A., Wang, H., Yesner, G., Safari, A., & Maher, A. (2017). Optimized design of layered bridge transducer for piezoelectric energy harvesting from roadway. Energy, 141, 1133. https://doi.org/10.1016/j.energy.2017.10.005

    Article  Google Scholar 

  82. Wang, C., Wang, S., Li, Q. J., Wang, X., Gao, Z., & Zhang, L. (2018). Fabrication and performance of a power generation device based on stacked piezoelectric energy-harvesting units for pavements. Energy Conversion and Management, 163, 196. https://doi.org/10.1016/j.enconman.2018.02.045

    Article  Google Scholar 

  83. Jasim, A., Yesner, G., Wang, H., Safari, A., Maher, A., & Basily, B. (2018). Laboratory testing and numerical simulation of piezoelectric energy harvester for roadway applications. Applied Energy, 224, 438. https://doi.org/10.1016/j.apenergy.2018.05.040

    Article  Google Scholar 

  84. Rui, X., Li, Y., Liu, Y., Zheng, X., & Zeng, Z. (2018). Experimental study and parameter optimization of a magnetic coupled piezoelectric energy harvester. Applied Sciences, 8(12), 2609. https://doi.org/10.3390/app8122609

    Article  Google Scholar 

  85. Yesner, G., Jasim, A., Wang, H., Basily, B., Maher, A., & Safari, A. (2019). Energy harvesting and evaluation of a novel piezoelectric bridge transducer. Sensors and Actuators A: physical, 285, 348. https://doi.org/10.1016/j.sna.2018.11.013

    Article  Google Scholar 

  86. Wang, C., Song, Z., Gao, Z., Yu, G., & Wang, S. (2019). Preparation and performance research of stacked piezoelectric energy-harvesting units for pavements. Energy and Buildings, 183, 581. https://doi.org/10.1016/j.enbuild.2018.11.042

    Article  Google Scholar 

  87. Pascual-Muñoz, P., Castro-Fresno, D., Serrano-Bravo, P., & Alonso-Estébanez, A. (2013). Thermal and hydraulic analysis of multilayered asphalt pavements as active solar collectors. Applied Energy, 111, 324. https://doi.org/10.1016/j.apenergy.2013.05.013

    Article  Google Scholar 

  88. García, A., & Partl, M. N. (2014). How to transform an asphalt concrete pavement into a solar turbine. Applied Energy, 119, 431. https://doi.org/10.1016/j.apenergy.2014.01.006

    Article  Google Scholar 

  89. Guldentops, G., Nejad, A. M., Vuye, C., den Bergh, W. V., & Rahbar, N. (2016). Performance of a pavement solar energy collector: Model development and validation. Applied Energy, 163, 180. https://doi.org/10.1016/j.apenergy.2015.11.010

    Article  Google Scholar 

  90. Mallick, R. B., Chen, B. L., & Bhowmick, S. (2012). Harvesting heat energy from asphalt pavements: Development of and comparison between numerical models and experiment. International Journal of Sustainable Engineering, 5(2), 159. https://doi.org/10.1080/19397038.2011.574742

    Article  Google Scholar 

  91. Wu, S., Chen, M., Wang, H., & Zhang, Y. (2009). Laboratory study on solar collector of thermal conductive asphalt concrete. International Journal of Pavement. http://www.ijprt.org.tw/mailweb/files/sample/V2N4(2).pdf

  92. Hasebe, M., Kamikawa, Y., Meiarashi, S. (2006). Thermoelectric generators using solar thermal energy in heated road pavement. In 2006 25th international conference on thermoelectrics (pp. 697–700). IEEE. https://doi.org/10.1109/ICT.2006.331237

  93. Pan, P., Wu, S., Xiao, Y., Liu, G. (2015). A review on hydronic asphalt pavement for energy harvesting and snow melting. Renewable and Sustainable Energy Reviews, 48, 624–634.https://doi.org/10.1016/j.rser.2015.04.029

    Article  Google Scholar 

  94. Wu, S., Chen, M., Wang, H., & Zhang, Y. (2009). A review on hydronic asphalt pavement for energy harvesting and snow melting. International Journal of Pavement Research and Technology, 2, 130–136. https://doi.org/10.1016/j.rser.2015.04.029

    Article  Google Scholar 

  95. Datta, U., Dessouky, S., & Papagiannakis, A. (2017). Harvesting thermoelectric energy from asphalt pavements. Transportation Research Record, 2628(1), 12. https://doi.org/10.3141/2628-02

    Article  Google Scholar 

  96. Jiang, W., Yuan, D., Xu, S., Hu, H., Xiao, J., Sha, A., & Huang, Y. (2017). Energy harvesting from asphalt pavement using thermoelectric technology. Applied Energy, 205, 941. https://doi.org/10.1016/j.apenergy.2017.08.091

    Article  Google Scholar 

  97. Tahami, S. A., Gholikhani, M., Nasouri, R., Dessouky, S., & Papagiannakis, A. (2019). Developing a new thermoelectric approach for energy harvesting from asphalt pavements. Applied Energy, 238, 786. https://doi.org/10.1016/j.apenergy.2019.01.152

    Article  Google Scholar 

  98. Wu, G., & Yu, X. B. (2013). Computer-aided design of thermal energy harvesting system across pavement structure. International Journal of Pavement Research and Technology, 6(2), 73. https://pdfs.semanticscholar.org/9a74/d488bc881a9f8935c312e7f8478a1e437011.pdf

  99. Twaha, S., Zhu, J., Yan, Y., & Li, B. (2016). A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement. Renewable and Sustainable Energy Reviews, 65, 698. https://doi.org/10.1016/j.rser.2016.07.034

    Article  Google Scholar 

  100. Jiang, W., Xiao, J., Yuan, D., Lu, H., Xu, S., & Huang, Y. (2018). Design and experiment of thermoelectric asphalt pavements with power-generation and temperature-reduction functions. Energy and Buildings, 169, 39. https://doi.org/10.1016/j.enbuild.2018.03.049

    Article  Google Scholar 

  101. Jiang, W., Yuan, D., Xu, S., Hu, H., Xiao, J., Sha, A., & Huang, Y. (2017). Energy harvesting from asphalt pavement using thermoelectric technology. Applied Energy, 205, 941. https://doi.org/10.1016/j.apenergy.2017.08.091

    Article  Google Scholar 

  102. Tahami, S. A., Gholikhani, M., & Dessouky, S. (2020). Thermoelectric energy harvesting system for roadway sustainability. Transportation Research Record, 2674(2), 135. https://doi.org/10.1177/0361198120905575

    Article  Google Scholar 

  103. Tahami, A., Gholiakhani, M., Dessouky, S., Montoya, A., Papagiannakis, A., Fuentes, L., & Walubita, L. F. (2021). Evaluation of a roadway thermoelectric energy harvester through FE analysis and laboratory tests. International Journal of Sustainable Engineering, 14(5), 1016–1032. https://doi.org/10.1080/19397038.2021.1924892

    Article  Google Scholar 

  104. Xu, L., Wang, J., Xiao, F., Sherif, E. B., & Awed, A. (2021). Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses. Applied Energy, 281, 116077. https://doi.org/10.1016/j.apenergy.2020.116077

    Article  Google Scholar 

  105. Park, D. W., & Kim, I. T. (2013). Thermal properties of permeable friction asphalt mixture and estimation of temperature profiles. International Journal of Pavement Engineering, 14(8), 752. https://doi.org/10.1080/10298436.2012.715645

    Article  Google Scholar 

  106. Xu, Q., & Solaimanian, M. (2010). Modeling temperature distribution and thermal property of asphalt concrete for laboratory testing applications. Construction and Building Materials, 24(4), 487. https://doi.org/10.1016/j.conbuildmat.2009.10.013

    Article  Google Scholar 

  107. Yoon, K. S., Hong, S. W., & Cho, G. H. (2017). Double pile-up resonance energy harvesting circuit for piezoelectric and thermoelectric materials. IEEE Journal of Solid-State Circuits, 53(4), 1049.https://doi.org/10.1109/JSSC.2017.2778279. https://ieeexplore.ieee.org/document/8232464

  108. Li, Y., Liu, Y., Liu, X., Wang, X., & Li, Q. (2019). An energy extraction enhanced interface circuit for piezoelectric and thermoelectric energy harvesting. IEICE Electronics Express 16-20190066. https://doi.org/10.1587/elex.16.20190066. https://www.jstage.jst.go.jp/article/elex/16/6/16_16.20190066/_article/-char/ja

  109. Dessai, S., & Dessai, A. (2016). in Design of piezoelectric-thermoelectric hybrid energy harvester for wireless sensor network. Proceedings of International Conference Smart Electron. (ICSES) (pp. 78–81). http://i3cpublications.org/vol3-issue3/IJTS03031916ICSES16.pdf

  110. Zhou, Y., Zhang, S., Xu, X., Liu, W., Zhang, S., Li, G., & He, J. (2020). Dynamic piezo-thermoelectric generator for simultaneously harvesting mechanical and thermal energies. Nano Energy. https://doi.org/10.1016/j.nanoen.2019.104397

    Article  Google Scholar 

  111. Kumar, S., Singh, H. H., & Khare, N. (2019). Flexible hybrid piezoelectric-thermoelectric generator for harnessing electrical energy from mechanical and thermal energy. Energy Conversion and Management, 198, 111783. https://doi.org/10.1016/j.enconman.2019.111783

    Article  Google Scholar 

  112. Montgomery, D. S., Hewitt, C. A., & Carroll, D. L. (2016). Hybrid thermoelectric piezoelectric generator. Applied Physics Letters, 108(26), 263901. https://doi.org/10.1063/1.4954770

    Article  Google Scholar 

  113. Dorey, R. A. (2014). Integrated powder-based thick films for thermoelectric, pyroelectric, and piezoelectric energy harvesting devices. IEEE Sensors Journal, 14(7), 2177. https://doi.org/10.1109/JSEN.2014.2306443

    Article  Google Scholar 

  114. Goudarzi, M., Niazi, K., Besharati, M. K. (2013). Hybrid energy harvesting from vibration and temperature gradient by PZT and PMN-0.25 PT ceramics. Materials Physics and Mechanics, 16(1), 55. https://www.researchgate.net/publication/275034922_Hybrid_energy_harvesting_from_vibration_and_temperature_gradient_by_PZT_and_PMN-025PT_ceramics

  115. Mankins, J. C., et al. (1995). Technology readiness levels, White Paper, April 6

  116. Wang, H., Jasim, A., & Chen, X. (2018). Energy harvesting technologies in roadway and bridge for different applications–A comprehensive review. Applied Energy, 212, 1083–1094.https://doi.org/10.1016/j.apenergy.2017.12.125

    Article  Google Scholar 

  117. Zhang, Z., Xiang, H., & Shi, Z. (2016). Energy harvesting technologies in roadway and bridge for different applications: A comprehensive review. Journal of Intelligent Material Systems and Structures, 27(4), 567.

    Article  Google Scholar 

  118. Moure, A., Rodríguez, M. I., Rueda, S. H., Gonzalo, A., Rubio-Marcos, F., Cuadros, D. U., Pérez-Lepe, A., & Fernández, J. (2016). Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting. Energy Conversion and Management, 112, 246. https://doi.org/10.1016/j.enconman.2016.01.030

    Article  Google Scholar 

  119. Sazonov, E., Li, H., Curry, D., & Pillay, P. (2009). Self-powered sensors for monitoring of highway bridges. IEEE Sensors Journal, 9(11), 1422.

    Article  Google Scholar 

  120. Kim, I. H., Jang, S. J., & Jung, H. J. (2013). Performance enhancement of a rotational energy harvester utilizing wind-induced vibration of an inclined stay cable. Smart Materials and Structures, 22(7), 075004.https://doi.org/10.1088/0964-1726/22/7/075004

    Article  Google Scholar 

  121. Minsk, L. D., et al. (1999). Heated bridge technology-report on istea sec. 6005 program. Tech. rep., United States. Federal Highway Administration

  122. Schwartz, A. (2010). GE prize. Recharging roadway startup Wins

  123. Winger, S. (2016). The photovoltaic highway. http://large.stanford.edu/courses/2010/ph240/winger2/

  124. Lund, J. W. (2005). Pavement snow melting, Technical Report, OSTI ID: 895225, United States. https://www.osti.gov/etdeweb/servlets/purl/895225

  125. Tran, T. T., & Smith, A. D. (2018). Incorporating performance-based global sensitivity and uncertainty analysis into LCOE calculations for emerging renewable energy technologies. Applied Energy, 216, 157–171. https://doi.org/10.1016/j.apenergy.2018.02.024

    Article  Google Scholar 

Download references

Acknowledgements

This work was developed with the collaboration of the Higher Institute of Technology of Antananarivo (I.S.T.), Ministry of Higher Education and Scientific Research, Iadiambola Ampasampito, PO Box 8122, Antananarivo 101, Madagascar; the PIMENT Laboratory, University of La Reunion, 117 Rue du General Ailleret - 97430 Le Tampon-La Réunion, France; and the Department of Civil Engineering, University of Pretoria, Private Bag X20 Hatfield 0028, South Africa and was funded by the ERASMUS+ project and “La Région Réunion.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Ali Hamada Fakra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Randriantsoa, A.N.A., Fakra, D.A.H., Rakotondrajaona, L. et al. Recent Advances in Hybrid Energy Harvesting Technologies Using Roadway Pavements: A Review of the Technical Possibility of Using Piezo-thermoelectrical Combinations. Int. J. Pavement Res. Technol. 16, 796–821 (2023). https://doi.org/10.1007/s42947-022-00164-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-022-00164-z

Keywords

Navigation