Skip to main content
Log in

Structural Analysis of Pavements with Geogrids-Reinforced Wearing Courses

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

This research deals with mechanical tests and structural analyses of a pre-designed asphalt pavement, considering scenarios in which the wearing course is unreinforced or reinforced with geogrid. The experimental program included the design of two hot mix asphalts. Reinforced specimens were produced with three different types of paving geogrids. Mechanical tests of tensile strength and resilient modulus were carried out, as well as structural analyses of the pre-designed pavement, varying the resilient stiffness of the wearing course. It provided the maximum horizontal tensile stresses and strains that were used to evaluate the fatigue response of the reinforced and unreinforced asphalt pavements, according to different fatigue models. The results of the mechanical tests showed that the reinforced mixtures presented higher values of tensile strength and resilient modulus than unreinforced asphalt mixtures. Regarding the effects of reinforcement geogrids on the structural performance of the asphalt pavements, the results indicated that despite the tendency for higher maximum horizontal tensile stresses in lower fibers, the wearing course of asphalt mixtures with geogrids exhibited a reduction in specific tensile strains. Consequently, a tendency for longer fatigue life was verified. In addition to conventional reinforcement mechanisms, the pre-stressing or pre-tensioning of the geogrid due to compaction is also assumed to account for the superior structural performance of reinforced asphalt mixtures. The mechanical properties of the reinforced asphalt mixes and their corresponding structural pavement responses were found to be dependent on the type of geogrid, the grading zone of aggregate and the binder contents of the asphalt mix that composes the wearing course.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Fu, Z., Shen, W., Huang, Y., Hang, G., & Li, X. (2017). Laboratory evaluation of pavement performance using modified asphalt mixture with a new composite reinforcing material. International Journal of Pavement Research and Technology, 10(6), 507–516.

    Article  Google Scholar 

  2. National Transport Confederation, CNT research on highways 2021. (2021). Management Report. Brasília, Brazil, 234 p

  3. Knonw, J., Tutumluer, E., & Konietzky, H. (2008). Aggregate base residual stresses affecting geogrid reinforced flexible pavement response. Inter. J. of Pavement Eng., 9(4), 275–285.

    Article  Google Scholar 

  4. Lee, J., Kim, Y. R., & Lee, J. (2014). Rutting performance evaluation of asphalt mix with different types of geosynthetics using MMLS3. International Journal of Pavement Engineering, 16(10), 894–905.

    Article  Google Scholar 

  5. Hozayen, H., Gervais, M., Abd El Halim, A. O., & Hassa, R. (1993). Analytical and experimental investigations of operating mechanisms in reinforced asphalt pavement. Journal of the Transportation Research Board, 1388, 80–87.

    Google Scholar 

  6. Lackner, C., Bergado, D. T., & Semprich, S. (2013). Prestressed reinforced soil by geosynthetics e Concept and experimental investigations. Geotextiles and Geomembranes, 37, 109–123.

    Article  Google Scholar 

  7. Nawy, E. G. (1993). Prestressed concrete: A fundamental approach (3rd ed.). Pearson Education.

    Google Scholar 

  8. Budkowska, B. B., & Yu, J. (2003). Mitigation of short term rutting by interlocking layer developed around a geogrid-sensitivity analysis. Computers and Geotechnics, 30(1), 61–79.

    Article  Google Scholar 

  9. Perkins, S.W., Christopher, B.R., Eiksund, G.R., Schwartz, C.W., Svano, G. (2005). Modeling effects of reinforcement on lateral confinement of roadway aggregate. Geo-Frontiers Congress, Austin, United States.

  10. Tang, X., Palomino, A. M., & Stoffels, S. M. (2016). Permanent deformation behaviour of reinforced flexible pavements built on soft soil subgrade. Road Materials and Pavement Design, 17(2), 311–327.

    Article  Google Scholar 

  11. Canestrari, F., Belogi, L., Ferrotti, G., & Graziani, A. (2015). Shear and flexural characterization of grid-reinforced asphalt pavements and relation with field distress evolution. Materials and Structures, 48(4), 959–975.

    Article  Google Scholar 

  12. Mounes, S. M., Karim, M. R., Khodaii, A., & Almasi, M. H. (2016). Evaluation of permanent deformation of geogrid reinforced asphalt concrete using dynamic creep test. Geotextiles and Geomembranes, 44(1), 109–116.

    Article  Google Scholar 

  13. Zamora-Barraza, D., Calzada-Pérez, M. A., Castro-Fresno, D., et al. (2011). Evaluation of anti-reflective cracking systems using geosynthetics in the interlayer zone. Geotextiles and Geomembranes, 29(1), 130–136.

    Article  Google Scholar 

  14. Ferrotti, G., Canestrari, F., Pasquini, E., Virgili, A., & Grilli, A. (2011). Astrategic laboratory approach for the performance investigation of geogrids in flexible pavements. Construction and Building Materials, 25(5), 2343–2348.

    Article  Google Scholar 

  15. Moghadas Nejad, F., Noory, A., Toolabib, S., & Fallah, S. (2014). Effect of using geosynthetics on reflective crack prevention. International Journal of Pavement Engineering. https://doi.org/10.1080/10298436.2014.943128

    Article  Google Scholar 

  16. Graziani, A., Pasquini, E., Ferrotti, G., Virgili, A., & Canestrari, F. (2014). Structural response of grid-reinforced bituminous pavements. Materials and Structures, 47(8), 1391–1408.

    Article  Google Scholar 

  17. Correia, N. S., & Zornberg, J. G. (2016). Mechanical response of flexible pavements enhance with geogrid-reinforced asphalt overlays. Geosynthetics International, 23(3), 183–193.

    Article  Google Scholar 

  18. Bastos, G. A. (2010). Comportamento Mecânico de Misturas Asfálticas Reforçadas com Geogrelhas para Pavimentos Flexíveis [Mechanical Behavior of asphalt mixtures with geogrid’s reinforcement for flexible pavements], (Master Dissertation), Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.

  19. Kakuda, F. M., Parreira, A. B., & Fabbri, G. T. P. (2011). Análise de um pavimento reforçado com geossintético a partir de resultados de ensaios em equipamento de grandes dimensões [Analysis of a pavement with geosynthetics reinforcement from results of tests on large equipment]. Transportes, 19(3), 28–34.

    Article  Google Scholar 

  20. Gu, F., Luo, X., Luo, R., Hajj, E. Y., & Lytton, R. L. (2017). A mechanistic-empirical approach to quantify the influence of geogrid on the performance of flexible pavement structures. Transportation Geotechnics, 13(1), 69–80.

    Article  Google Scholar 

  21. Siriwardane, H., Gondle, R., & Kutuk, B. (2010). Analysis of flexible pavements reinforced with geogrids. Geotechnical and Geological Engineering, 28(3), 287–297.

    Article  Google Scholar 

  22. Thom, N. H. (2003). Grid reinforced overlays: predicting the unpredictable. MAIREPAV'03-3rd international conference maintenance and rehabilitation of pavements and technological control, Guimaraes, Portugal.

  23. Departamento Nacional de Estradas de Rodagem, Petróleo e Derivados – Determinação da Densidade – Método do Densímetro [Determination of Real Specific Density and Relative Density]. (1998). ME 009–98. DNER, Rio de Janeiro, BRASIL.

  24. Departamento Nacional de Infraestrutura de Transportes, Material Asfáltico – Determinação da Penetração [Determination of Penetration]. (2010). ME 155–10. DNIT, Rio de Janeiro, Brazil.

  25. Departamento Nacional de Estradas de Rodagem, Material Betuminoso – Determinação dos Pontos de Fulgor e de Combustão: Método de Ensaio [Determination of Flash Point and Fire Point]. (1994). ME 148–94. DNER, Rio de Janeiro, Brazil.

  26. Departamento Nacional de Infraestrutura de Transportes, Materiais Asfálticos – Determinação do Ponto de Amolecimento – Método do Anel e Bola [Determination of Softening point]. (2010). ME 131–10. DNIT, Rio de Janeiro, Brazil.

  27. Associação Brasileira de Normas Técnicas, Ligantes Asfálticos – Determinação da Solubilidade em Tricloroetileno [Asphalt binder - Determination of Solubility in Trichlorethylene]. (2015). NBR 14855–15. ABNT, Rio de Janeiro, Brazil.

  28. Departamento Nacional de Estradas de Rodagem, Material Betuminoso – Determinação da Viscosidade Saybolt-Furol a Alta Temperatura [Determination of Viscosity Saybolt-Furol]. (1994). ME 004–94. DNER, Rio de Janeiro, Brazil.

  29. Departamento Nacional de Estradas de Rodagem, Agregado: Determinação do Índice de Forma [Determination of Form Index]. (1994). ME 086–94. DNER, Rio de Janeiro, Brazil.

  30. Departamento Nacional de Estradas de Rodagem, Agregado: Determinação do Teor de Materiais Pulverulentos. (1997). [Determination of Powdery material]. ME 266–97. DNER, Rio de Janeiro, Brazil.

  31. Departamento Nacional de Estradas de Rodagem, Agregados: Determinação da Abrasão “Los Angeles” [Determination of Los Angeles Abrasion]. (1998). ME 035–98. DNER, Rio de Janeiro, Brazil.

  32. Departamento Nacional de Estradas de Rodagem, Agregado Graúdo - Adesividade a Ligante Betuminoso [Adhesivity to the Asphalt Binder]. (1994). ME 078–94. DNER, Rio de Janeiro, Brazil.

  33. Departamento Nacional de Estradas de Rodagem, Agregados: Determinação da Absorção e da Densidade de Agregado Graúdo [Determination of Absorption and Real and Apparent Specific Density]. (1998). ME 081–98. DNER, Rio de Janeiro, Brazil.

  34. Departamento Nacional de Estradas de Rodagem, Agregados - Determinação da Massa Específica de Agregados Miúdos por Meio do Frasco Chapman [Determination of Specific Density of Fine Aggregate]. (1998). ME 194–98. DNER, Rio de Janeiro, Brazil.

  35. Departamento Nacional de Estradas de Rodagem, Agregados – Avaliação da durabilidade pelo emprego de soluções de sulfato de sódio ou de magnésio. [Evaluation of durability using sodium or magnesium sulfate solutions]. (1994). ME 089–94. DNER, Rio de Janeiro, Brazil.

  36. Departamento Nacional de Estradas de Rodagem, Equivalente de areia. [Sand Equivalent]. (1994). ME 054–94. DNER, Rio de Janeiro, Brazil.

  37. American Society for Testing and Materials, Standard test methods for uncompacted void content of fine aggregate (as influenced by particle shape, surface texture and grading). (1993). C 1252. ASTM, USA.

  38. American Society for Testing and Materials, Standard test methods for flat particles, elongated particles, or flat and elongated particles in coarse aggregate. (2000). D 4791. ASTM, USA.

  39. Departamento Nacional de Infraestrutura de Transportes, Pavimentos Flexíveis – Concreto Asfáltico – Especificação de Serviço [Hot mix asphalt – Petroleum Asphaltic Cement - Specification ES 031]. ES 031–06. (2006). DNIT, Rio de Janeiro, Brazil.

  40. Departamento Nacional de Estradas de Rodagem, Misturas Betuminosas a Quente – Ensaio Marshall para Misturas Betuminosas [Marshall Mix Design Method]. (1995). ME 043–95. DNER, Rio de Janeiro, Brazil.

  41. Departamento Nacional de Infraestrutura de Transportes, Pavimentação Asfáltica - Misturas Asfálticas - Determinação da Resistência à Tração por Compressão Diametral [Tensile Strength -Brazilian Test]. (2018). ME 136–18. DNIT, Rio de Janeiro, Brazil.

  42. Departamento Nacional de Infraestrutura de Transportes, Pavimentação Asfáltica - Misturas Asfálticas - Determinação do Módulo de Resiliência [Resilient Modulus Test]. (2018). ME 135–18. DNIT, Rio de Janeiro, Brazil.

  43. Ponte, R. S., Branco, V. T. F. C., Holanda, A. S., & Soares, J. B. (2014). Avaliação de diferentes metodologias para obtenção do módulo de resiliência de misturas asfálticas [Evaluation of different methodologies for obtaining the resilient modulus of asphalt mixtures]. Transportes, 22(2), 85–94.

    Article  Google Scholar 

  44. Carmo, C. A. T. (1998). A avaliação do módulo de resiliência através de ensaios triaxiais dinâmicos de dois solos compactados e a sua estimativa a partir de ensaios rotineiros [The evaluation of the resilient modulus through dynamic triaxial tests of two compacted soils and its estimation from routine tests], (Master Dissertation), São Carlos School of Engineering, São Paulo, Brazil.

  45. Departamento Nacional de Estradas de Rodagem, Pavimento – determinação das deflexões pela viga Benkelman [Determination of deflections by the Benkelman beam]. (1994). ME 024–94. DNER, Rio de Janeiro, Brazil.

  46. Pinto, S. (1991). Estudo do comportamento à fadiga de misturas betuminosas e aplicação na avaliação estrutural de pavimentos [Study of the fatigue behavior of bituminous mixtures and application in the structural evaluation of pavements]. (PhD Tesis), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

  47. Franco, F. A. C. P. (2007). Método De Dimensionamento Mecanístico-Empírico De Pavimentos Asfálticos – Sispav [Empirical-Mechanical Sizing Method for Asphalt Pavements - Sispav ]. (PhD Tesis), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Géssica Soares PEREIRA.

Ethics declarations

Conflict of Interest

The authors have no competing interest to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

PEREIRA, G.S., PITANGA, H.N., da SILVA, T.O. et al. Structural Analysis of Pavements with Geogrids-Reinforced Wearing Courses. Int. J. Pavement Res. Technol. 16, 662–677 (2023). https://doi.org/10.1007/s42947-022-00155-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-022-00155-0

Keywords

Navigation