Skip to main content
Log in

Evaluation of Self-Healing Performance and Mechanism Analysis of Nano-Montmorillonite-Modified Asphalt

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

To evaluate and compare the self-healing properties of asphalt with different nano-montmorillonite (MMT) additions and from explaining the self-healing mechanism, the self-healing properties of base asphalt and Styrene Butadiene Styrene (SBS) modified asphalt with different MMT additions were tested using accompanying rest-time Dynamic Shear Rheometer (DSR) time-sweep test. Brookfield rotational viscosity test, sweeping electron microscope test, sessile drop test, Fourier transform infrared spectroscopy test, and gel permeation chromatography test were used to analyze the self-healing mechanism of the asphalt binder. Then, these indexes were correlated with the self-healing performance. The results showed that there were significant differences between the self-healing performance of base asphalt and SBS-modified asphalt binder. The intercalation structure formed by MMT in the binder increased the content of methylene and macromolecules, and increased the viscosity and surface free energy of the binder, thus increasing the active healing performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cheng, P., Li, Y., & Zhang, Z. (2021). Effect of phenolic resin on the rheological, chemical, and aging properties of SBR-modified asphalt. International Journal of Pavement Research and Technology, 14, 421–427.

    Article  Google Scholar 

  2. Santagata, E., Baglieri, O., Tsantilis, L., & Chiappinelli, G. (2015). Fatigue properties of bituminous binders reinforced with carbon nanotubes. International Journal of Pavement Engineering, 16, 80–90.

    Article  Google Scholar 

  3. Wang, C., Chen, Y., & Cao, W. (2019). A chemo-rheological approach to the healing characteristics of asphalt binders under short- and long-term oxidative aging. Construction and Building Materials, 221, 553–561.

    Article  Google Scholar 

  4. Tirupan, M., Cheng, L., Preeda, C., Hussain, U., & Bahia, A. (2019). Evaluation of analysis methods of the semi-circular bend (SCB) test results for measuring cracking resistance of asphalt mixtures. International Journal of Pavement Research and Technology, 12, 456–463.

    Article  Google Scholar 

  5. Ibrahim, A.-H.A. (2019). Laboratory investigation of aged HDPE-modified asphalt mixes. International Journal of Pavement Research and Technology, 12, 364–369.

    Article  Google Scholar 

  6. Islam, M. R., Hossain, M. I., & Tarefder, R. A. (2015). A study of asphalt aging using indirect tensile strength test. Construction and Building Materials, 95, 218–223.

    Article  Google Scholar 

  7. Sun, D., Sun, G., Zhu, X., Guarin, A., Li, B., Dai, Z., & Ling, J. (2018). A comprehensive review on self-healing of asphalt materials: Mechanism, model, characterization and enhancement. Advances in Colloid and Interface Science, 256, 65–93.

    Article  Google Scholar 

  8. Xu, S., Garcia, A., Su, J., Liu, Q., Tabakovi, A., & Schlangen, E. (2018). Self-Healing asphalt review: From idea to practice. Advanced Materials Interfaces, 2018, 5.

    Google Scholar 

  9. Salehfard, R., Behbahani, H., Dalmazzo, D., & Santagata, E. (2021). Effect of colloidal instability on the rheological and fatigue properties of asphalt binders. Construction and Building Materials, 2021, 281.

    Google Scholar 

  10. Wang, C., Xue, L., Xie, W., & Cao, W. (2020). Investigation on self-healing of neat and polymer modified asphalt binders. Archives of Civil and Mechanical Engineering, 2020, 20.

    Google Scholar 

  11. Hu, M., Sun, D., Lu, T., Ma, J., & Yu, F. (2020). Laboratory investigation of the adhesion and self-healing properties of high-viscosity modified asphalt binders. Transportation Research Record, 2674, 307–318.

    Article  Google Scholar 

  12. Kie-Badroodi, S., Reza-Keymanesh, M., & Shafabakhsh, G. (2020). Experimental investigation of the fatigue phenomenon in nano silica-modified warm mix asphalt containing recycled asphalt considering self-healing behavior. Construction and Building Materials, 2020, 246.

    Google Scholar 

  13. Shiping, F., Hao, W., Hongzhou, Z., & Wei, S. (2018). Evaluation of self-healing performance of asphalt concrete for low-temperature fracture using semicircular bending test. Journal of Materials in Civil Engineering, 2018, 30.

    Google Scholar 

  14. Lou, B., Sha, A., Li, Y., Wang, W., & Cui, X. (2020). Effect of metallic-waste aggregates on microwave self-healing performances of asphalt mixtures. Construction and Building Materials, 246, 118510.

    Article  Google Scholar 

  15. Zhang, Z., Cheng, P., & Li, Y. (2020). Effect of nano montmorillonite on the multiple self-healing of micro-cracks in asphalt mixture. Road Materials and Pavement Design, 1, 15.

    Google Scholar 

  16. Lee, J. Y., Buxton, G. A., & Balazs, A. C. (2004). Using nanoparticles to create self-healing composites. Journal of Chemical Physics, 121, 5531–5540.

    Article  Google Scholar 

  17. Gupta, S., Zhang, Q., Emrick, T., Balazs, A., & Russell, T. (2006). Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures. Nature Materials, 5, 229–233.

    Article  Google Scholar 

  18. Tang, X., Kong, X., He, Z., & Li, J. (2011). Nano-montmorillonite/SBS composite modified asphalt: Preparation and aging property. Materials Science Forum., 2011, 5.

    Google Scholar 

  19. Jin, J., Gao, Y., Wu, Y., Liu, S., & Zheng, J. (2020). Rheological and adhesion properties of nano-organic palygorskite and linear SBS on the composite modified asphalt. Powder Technology, 377, 212–221.

    Article  Google Scholar 

  20. Jia, M., Zhang, Z., Wei, L., Li, J., & Mao, Z. (2019). High- and low-temperature properties of layered silicate-modified bitumens: View from the nature of pristine layered silicate. Applied Sciences, 9, 3563.

    Article  Google Scholar 

  21. Fang, C., Liu, X., Yu, R., Pei, L., & Lei, W. (2014). Preparation and properties of asphalt modified with a composite composed of waste package poly(vinyl chloride) and organic montmorillonite. Journal of Materials Science & Technology, 30, 1304–1310.

    Article  Google Scholar 

  22. Ye, F., Yin, W., Lu, H., & Dong, Y. (2020). Property improvement of nano-montmorillonite/SBS modified asphalt binder by naphthenic oil. Construction and Building Materials, 243, 118200.

    Article  Google Scholar 

  23. Ameli, A., Babagoli, R., Khabooshani, M., Aliasgari, R., & Jalali, F. (2019). Permanent deformation performance of binders and stone mastic asphalt mixtures modified by SBS/montmorillonite nanocomposite. Construction and Building Materials, 2019, 239.

    Google Scholar 

  24. Han, M., Jing, L., Yaseen, M., Yin, Y., Jing, Y., Song, Y., & Duan, S. (2018). Studies on the secondary modification of SBS modified asphalt by the application of octadecyl amine grafted graphene nanoplatelets as modifier. Diamond & Related Materials, 89, 140–150.

    Article  Google Scholar 

  25. Jiao, J., Yuchao, A., Ywa, D., Rui, L. A., Rlb, C., Hui, W. A., Gq, A., & Jz, A. (2020). Performance evaluation of surface-organic grafting on the palygorskite nanofiber for the modification of asphalt. Construction and Building Materials, 268, 121072.

    Google Scholar 

  26. Branco, V. C. (2009). A unified method for the analysis of nonlinear viscoelasticity and fatigue cracking of asphalt mixtures using the dynamic mechanical analyzer. Dc Language, 70, 2.

    Google Scholar 

  27. Luo, R., Yuan, X. U., Liu, H., Feng, G., & Transportation, S. O. (2018). Correction on self-healing index of asphalt binder and influence factors analysis. Journal of Building Materials, 21, 340–344.

    Google Scholar 

  28. Azarhoosh, A., Moghadas-Nejad, F., & Khodaii, A. (2018). Evaluation of the effect of nano-TiO2 on the adhesion between aggregate and asphalt binder in hot mix asphalt. European Journal of Environmental and Civil Engineering, 22, 946–961.

    Article  Google Scholar 

  29. Zhang, D. R., & Luo, R. (2019). Using the surface free energy (SFE) method to investigate the effects of additives on moisture susceptibility of asphalt mixtures. International Journal of Adhesion and Adhesives, 95, 102437.

    Article  Google Scholar 

  30. Moghadas-Nejad, F., Hamedi, G. H., & Azarhoosh, A. R. (2013). Use of surface free energy method to evaluate effect of hydrate lime on moisture damage in hot-mix asphalt. Journal of Materials in Civil Engineering, 25, 1119–1126.

    Article  Google Scholar 

  31. Fowkes, M. (1964). Frederick, attractive forces at interfaces. Industrial & Engineering Chemistry, 56, 40–52.

    Article  Google Scholar 

  32. Oss, C. V., Good, R. J., & Chaudhury, M. K. (1988). Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir, 4, 884–891.

    Article  Google Scholar 

  33. Ye, Y., Xu, G., Lou, L., Chen, X., & Shi, Y. (2019). Evolution of rheological behaviors of styrene-butadiene-styrene/crumb rubber composite modified bitumen after different long-term aging processes. Materials, 12, 2345.

    Article  Google Scholar 

  34. Owens, D. K., & Wendt, R. C. (1969). Estimation of the surface free energy of polymers. Journal of Applied Polymer Science, 1969, 13.

    Google Scholar 

  35. Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (1969). Estimation of the surface free energy of polymers. Journal of applied polymer science, 13(8), 1741–1747.

    Article  Google Scholar 

  36. Shen, J., Amirkhanian, S. N., & Lee, S. J. (2007). HP-GPC characterization of rejuvenated aged CRM binders. Journal of Materials in Civil Engineering, 19, 515–522.

    Article  Google Scholar 

  37. Zhao, X., Wang, S., Wang, Q., & Yao, H. (2016). Rheological and structural evolution of SBS modified asphalts under natural weathering. Fuel, 184, 242–247.

    Article  Google Scholar 

  38. Wang, A., Meng, J. A., Wei, J., Baowen, C., Wenxiu, A., Dongdong, A., Xinzhou, A., & Zla, B. (2020). High temperature property and modification mechanism of asphalt containing waste engine oil bottom—ScienceDirect. Construction and Building Materials, 261, 119977.

    Article  Google Scholar 

  39. Ding, Z., Li, P., Zhang, J., Bing, H., & Yue, X. (2020). Analysis of viscosity test conditions for crumb-rubber-modified asphalt. Construction and Building Materials, 245, 118454.

    Article  Google Scholar 

  40. Wang, R. R., Qi, Z. M., Li, R. X., & Yue, J. C. (2020). Investigation of the effect of aging on the thermodynamic parameters and the intrinsic healing capability of graphene oxide modified asphalt binders. Construction and Building Materials, 2020, 230.

    Google Scholar 

  41. Azarhoosh, A., Abandansari, H. F., & Hamedi, G. H. (2019). Surface-free energy and fatigue performance of hot-mix asphalt modified with nano lime. Journal of Materials in Civil Engineering, 2019, 31.

    Google Scholar 

  42. Santagata, E., Baglieri, O., Miglietta, F., Antilis, L. T., & Riviera, P. P. (2019). Impact of nanosized additives on the fatigue damage behavior of asphalt mixtures. Fatigue & Fracture of Engineering Materials & Structures, 42, 2738–2746.

    Article  Google Scholar 

  43. Cong, P., Guo, X., & Mei, L. (2020). Investigation on rejuvenation methods of aged SBS modified asphalt binder. Fuel, 279, 118556.

    Article  Google Scholar 

  44. Sun, G. Q., Ma, J. M., Sun, D. Q., & Yu, F. (2021). Influence of weather accelerated aging on healing temperature sensitivity of asphalts. Journal of Cleaner Production, 2021, 281.

    Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial supports by the Fundamental Research Funds for the Central Universities [Grant no. 2572020AW51] and the Science and Technology Project of Heilongjiang Provincial Department of Transportation [Grant no. 201943219101].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanming Zhang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, P., Zhang, Z., Yang, Z. et al. Evaluation of Self-Healing Performance and Mechanism Analysis of Nano-Montmorillonite-Modified Asphalt. Int. J. Pavement Res. Technol. 15, 876–888 (2022). https://doi.org/10.1007/s42947-021-00059-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-021-00059-5

Keywords

Navigation