Skip to main content
Log in

Comparison of BBR results of EVA polymer and nano-CaCO3-modified bitumen using burger model, relaxation modulus, dissipation energy ratio, ANOVA, and artificial neural networks

  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

Temperature and loading time influence the viscoelastic behavior of bitumen. The present study aimed to compare the results of some analyses including Burger model, relaxation modulus, dissipation energy ratio, statistical analysis of ANOVA and artificial neural networks (ANN) and to investigate the viscoelastic behavior of bitumen modified with nano-CaCO3 (NCCO) and ethylene-vinyl acetate (EVA). To this end, the Bending Beam Rheometer (BBR) tests were conducted on NCCO- and EVA-modified bitumen at various temperatures. According to the previous studies, NCCO was utilized for 4% and 6% weight of neat bitumen and the BBR test was conducted at low temperatures of −6 and −12°C. In addition, EVA was utilized for 6% weight of neat bitumen and the BBR test was conducted at low temperatures of −6, −12 and −18°C. Hence, results of four models showed that EVA-modified bitumen could improve the viscoelastic behavior of bitumen in low temperatures and NCCO had a negligible effect on improving bitumen. Finally, results of the Burger model, relaxation modulus, and dissipation energy ratio were compared and based on these results, the relaxation modulus and dissipation energy ratio were more accurate than the Burger model. Additionally, results of the statistical analysis of ANOVA were weaker than the artificial neural networks (ANN) method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. H. Moon, M. O. Marasteanu, M. Turo, Comparison of thermal stresses calculated from asphalt binder and asphalt mixture creep tests, J. Mater. Civ. Eng. 25 (8) (2013) 1059–1067.

    Google Scholar 

  2. P. K. Das, Y. Tasdemir, B. Birgisson, Low temperature cracking performance of WMA with the use of the Superpave indirect tensile test, Constr. Build. Mater. 30 (2012) 643–649.

    Google Scholar 

  3. H. S. Lee, J. Kim, Determination of viscoelastic poisson’s ratio and creep compliance from the indirect tension test, J. Mater. Civ. Eng. 21 (8) (2009) 416–425.

    Google Scholar 

  4. J. Kim, G. A. Sholar, S. Kim, Determination of accurate creep compliance and relaxation modulus at a single temperature for viscoelastic solids, J. Mater. Civ. Eng. 20 (2) (2008) 147–156.

    Google Scholar 

  5. M. Ameri, S. Nowbakht, M. Molayem, M. H. Mirabimoghaddam, A study on fatigue modeling of hot mix asphalt mixtures based on the viscoelastic continuum damage properties of asphalt binder, Constr. Build. Mater. 106 (2016) 243–252.

    Google Scholar 

  6. A. C. Falchetto, K. H. Moon, Micromechanical-analogical modelling of asphalt binder and asphalt mixture creep stiffness properties at low temperature, Road Mater. Pavement Des. 16 (2015) 111–137.

    Google Scholar 

  7. L. Wang, G. Razaqpur, Y. Xing, G. Chen, Microstructure and rheological properties of aged and unaged polymer-modified asphalt binders, Road Mater. Pavement Des. 16 (3) (2015) 592–607.

    Google Scholar 

  8. M. Mazumder, H. Kim, S. Lee, ScienceDirect Performance properties of polymer modified asphalt binders containing wax additives, Int. J. Pavement Res. Technol. 9 (2) (2016) 128–139.

    Google Scholar 

  9. S. G. Jahromi, A. Khodaii, Effects of nanoclay on rheological properties of bitumen binder, Constr. Build. Mater. 23 (8) (2009) 2894–2904.

    Google Scholar 

  10. American Association of State Highway Transportation Officials, Standard Method of Test for Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR) Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR). AASHTO T 313-12. AASHTO, Washington DC, USA, 2012.

    Google Scholar 

  11. C. Qian, W. Fan, G. Yang, L. Han, B. Xing, X. Lv, Influence of crumb rubber particle size and SBS structure on properties of CR/SBS composite modified asphalt, Constr. Build. Mater. 235 (2020) 117517.

    Google Scholar 

  12. A. H. Abed, H. U. Bahia, Enhancement of permanent deformation resistance of modified asphalt concrete mixtures with nano-high density polyethylene, Constr. Build. Mater. 236 (2020) 117604.

    Google Scholar 

  13. S. A. M. Hesp, T. R. Hoare, S. D. Roy, Low-temperature Fracture in Reactive-ethylene-terpolymer-modified Asphalt Binders, Int. J. Pavement Eng. 3 (3) (2002) 153–159.

    Google Scholar 

  14. H. H. Kim, M. S. Lee, S. J. Lee, Performance evaluation of polymer modified asphalt (PMA) binders containing ground tire rubber (GTR), Int. J. Pavement Res. Technol. 12 (2) (2019) 215–222.

    Google Scholar 

  15. S. Haddadi, E. Ghorbel, N. Laradi, Effects of the manufacturing process on the performances of the bituminous binders modified with EVA, Constr. Build. Mater. 22 (6) (2008) 1212–1219.

    Google Scholar 

  16. G. D. Airey, Rheological evaluation of ethylene vinyl acetate polymer modified bitumens, Constr. Build. Mater. 16 (8) (2002) 473–487.

    Google Scholar 

  17. B. Sengoz, A. Topal, G. Isikyakar, Morphology and image analysis of polymer modified bitumens, Constr. Build. Mater. 23 (5) (2009) 1986–1992.

    Google Scholar 

  18. M. Ameri, A. Mansourian, A. H. Sheikhmotevali, Laboratory evaluation of ethylene vinyl acetate modified bitumens and mixtures based upon performance related parameters, Constr. Build. Mater. 40 (2013) 438–447.

    Google Scholar 

  19. R. Yu, X. Liu, M. Zhang, X. Zhu, C. Fang, Dynamic stability of ethylene-vinyl acetate copolymer/crumb rubber modified asphalt, Constr. Build. Mater. 156 (2017) 284–292.

    Google Scholar 

  20. R. Yu, X. Liu, M. Zhang, X. Zhu, C. Fang, Dynamic stability of ethylene-vinyl acetate copolymer/crumb rubber modified asphalt, Constr. Build. Mater. 156 (2017) 284–292.

    Google Scholar 

  21. B. Singh, P. Kumar, Effect of polymer modification on the ageing properties of asphalt binders: Chemical and morphological investigation, Constr. Build. Mater. 205 (2019) 633–641.

    Google Scholar 

  22. L. M. B. Costa, H. M. R. D. Silva, J. Peralta, J. R. M. Oliveira, Using waste polymers as a reliable alternative for asphalt binder modification — Performance and morphological assessment, Constr. Build. Mater. 198 (2019) 237–244.

    Google Scholar 

  23. H. Yao et al., Rheological properties and chemical bonding of asphalt modified with nanosilica, J. Mater. Civ. Eng. 25 (11) (2013) 1619–1630.

    Google Scholar 

  24. F. Mansour, V. Vahid, Effect of Liquid Nano Material and Hydrated Lime in Improving the Moisture Behaviour of HMA, Transp. Res. Procedia 17 (21) (2016) 506–512.

    Google Scholar 

  25. F. Moghadas Nejad, A. R. Azarhoosh, G. H. Hamedi, M. J. Azarhoosh, Influence of using nonmaterial to reduce the moisture susceptibility of hot mix asphalt, Constr. Build. Mater. 31 (2012) 384–388.

    Google Scholar 

  26. M. Arabani, H. Roshani, G. H. Hamedi, Estimating moisture sensitivity of warm mix asphalt modified with zycosoil as an antistrip agent using surface free energy method, J. Mater. Civ. Eng. 24 (7) (2012) 889–897.

    Google Scholar 

  27. G. Shafabakhsh, S. M. Mirabdolazimi, M. Sadeghnejad, Evaluation the effect of nano-TiO2 on the rutting and fatigue behavior of asphalt mixtures, Constr. Build. Mater. 54 (2014) 566–571.

    Google Scholar 

  28. G. H. Hamedi, F. Moghadas Nejad, K. Oveisi, Investigating the effects of using nanomaterials on moisture damage of HMA, Road Mater. Pavement Des. 16 (3) (2015) 536–552.

    Google Scholar 

  29. S. I. A. Ali, R. Abdulwahid, M. L. Eidan, N. I. M. Yusoff, Evaluation of moisture and ageing effects on calcium carbonate nanoparticles modified asphalt mixtures, Int. J. Eng. Res. Africa 34 (2018) 40–17.

    Google Scholar 

  30. D. Zhang, H. Zhang, C. Zhu, Effect of different rejuvenators on the properties of aged SBS modified asphalt, Pet. Sci. Technol. 35 (1) (2017) 72–78.

    MathSciNet  Google Scholar 

  31. N. Han, D. Zhou, X. Tang, Effect of nano calcium carbonate and montmorillonite on properties of styrene-butadiene-styrene copolymer modified asphalt, Appl. Mech. Mater. 99–100 (2011) 1035–1038.

    Google Scholar 

  32. X. Hao, A. Zhang, W. Yang, Study on the performance of nano calcium carbonate modified asphalt concrete AC-13, Adv. Mater. Res. 450–451 (2012) 503–507.

    Google Scholar 

  33. S. Aflaki, P. Hajikarimi, E. H. Fini, B. Zada, Comparing effects of biobinder with other asphalt modifiers on low-temperature characteristics of asphalt, J. Mater. Civ. Eng. 26 (3) (2014) 429–439.

    Google Scholar 

  34. S. Aflaki, P. Hajikarimi, Implementing viscoelastic rheological methods to evaluate low temperature performance of modified asphalt binders, Constr. Build. Mater. 36 (2012) 110–118.

    Google Scholar 

  35. J. Oner, B. Sengoz, S. F. Rija, A. Topal, Investigation of the rheological properties of elastomeric polymer-modified bitumen using warm-mix asphalt additives, Road Mater. Pavement Des. 18 (5) (2017) 1049–1066.

    Google Scholar 

  36. S. Liu, W. Cao, S. Shang, H. Qi, J. Fang, Analysis and application of relationships between low-temperature rheological performance parameters of asphalt binders, Constr. Build. Mater. 24 (4) (2010) 471–478.

    Google Scholar 

  37. K. Gopalakrishnan, S. Kim, H. Ceylan, O. Kaya, Development of Asphalt Dynamic Modulus Master Curve Using Falling Weight Deflectometer Measurements, TR-659. InTrans Project Reports. 69. Iowa State University, IA, USA, 2014.

    Google Scholar 

  38. C. H. Ho, P. Romero, Alternative function to represent relaxation modulus of viscoelastic materials, J. Mater. Civ. Eng. 24 (2) (2012) 152–158.

    Google Scholar 

  39. M. Ling, Y. Chen, S. Hu, X. Luo, R. L. Lytton, Enhanced model for thermally induced transverse cracking of asphalt pavements, Constr. Build. Mater. 206 (2019) 130–139.

    Google Scholar 

  40. B. V. Kok, M. Yilmaz, B. Sengoz, A. Sengur, E. Avci, Investigation of complex modulus of base and SBS modified bitumen with artificial neural networks, Expert Syst. Appl. 37 (12) (2010) 7775–7780.

    Google Scholar 

  41. E. I. Alrashydah, S. A. Abo-Qudais, Modeling of creep compliance behavior in asphalt mixes using multiple regression and artificial neural networks, Constr. Build. Mater. 159 (2018) 635–641.

    Google Scholar 

  42. Y. Li, S. Liu, Z. Xue, W. Cao, Experimental research on combined effects of flame retardant and warm mixture asphalt additive on asphalt binders and bituminous mixtures, Constr. Build. Mater. 54 (2014) 533–540.

    Google Scholar 

  43. G. H. Shafabakhsh, O. J. Ani, M. Talebsafa, Artificial neural network modeling (ANN) for predicting rutting performance of nano-modified hot-mix asphalt mixtures containing steel slag aggregates, Constr. Build. Mater. 85 (2015) 136–143.

    Google Scholar 

  44. A. Seitllari, Y. S. Kumbargeri, K. P. Biligiri, I. Boz, A soft computing approach to predict and evaluate asphalt mixture aging characteristics using asphaltene as a performance indicator, Mater. Struct. Constr. 52 (2019) 5.

    Google Scholar 

  45. Y. C. Lee, Y. R. Kim, S. R. Ranjithan, Dynamic analysis-based approach to determine flexible pavement layer moduli using deflection basin parameters, Transp. Res. Rec. 1639 (1998) 36–42.

    Google Scholar 

  46. F. Xiao, S. N. Amirkhanian, Artificial neural network approach to estimating stiffness behavior of rubberized asphalt concrete containing reclaimed asphalt pavement, J. Transp. Eng. 135 (8) (2009) 580–589.

    Google Scholar 

  47. S. Saha, F. Gu, X. Luo, R. L. Lytton, Prediction of soil-water characteristic curve for unbound material using fredlund-xing Eq.-based ANN approach, J. Mater. Civ. Eng. 30 (5) (2018) 1–10.

    Google Scholar 

  48. K. M. Abdalla, G. E. Stavroulakis, A Backpropagation Neural Network Model for Semi-rigid Steel Connections, Comput. Civ. Infrastruct. Eng. 10 (2) (1995) 77–87.

    Google Scholar 

  49. M. Li, H. Wang, Development of ANN-GA program for backcalculation of pavement moduli under FWD testing with viscoelastic and nonlinear parameters, Int. J. Pavement Eng. 20 (4) (2019) 490–498.

    Google Scholar 

  50. American Society for Testing and Materials, Standard Test Method for Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR) BT — Standard Test Method for Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR). ASTM D6648. ASTM International, West Conshohocken, PA, USA, 2016, p. 15.

    Google Scholar 

  51. American Association of State Highway Transportation Officials, Standard method of test for determining the flexural creep stiffness of asphalt binder using the bending beam rheometer (BBR). AASHTO T 313. AASHTO, Washington DC, USA, 2012.

    Google Scholar 

  52. Z. You, Y. Liu, Q. Dai, Three-Dimensional Microstructural-Based Discrete Element Viscoelastic Modeling of Creep Compliance Tests for Asphalt Mixtures, J. Mater. Civ. Eng. 23 (1) (2011) 79–87.

    Google Scholar 

  53. W. N. Findley, J. S. Lai, K. Onaran, Creep and relaxation of nonlinear viscoelastic materials: with an introduction to linear viscoelasticity, Elsevier, Dover, UK, 1989.

    MATH  Google Scholar 

  54. L. Shan, Y. Tan, H. Zhang, Y. Xu, Analysis of linear viscoelastic response function model for asphalt binders, J. Mater. Civ. Eng. 28(6) 4–11, 2016.

    Google Scholar 

  55. Y. H. Huang, Pavement Analysis and Design, Pearson, NJ, USA, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atousa Kianfar.

Additional information

Peer review under responsibility of Chinese Society of Pavement Engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhri, M., Kianfar, A. Comparison of BBR results of EVA polymer and nano-CaCO3-modified bitumen using burger model, relaxation modulus, dissipation energy ratio, ANOVA, and artificial neural networks. Int. J. Pavement Res. Technol. 14, 85–97 (2021). https://doi.org/10.1007/s42947-020-0006-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-020-0006-3

Keywords

Navigation