Skip to main content
Log in

Determination of moisture damage mechanism in asphalt mixtures using thermodynamic and mix design parameters

  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

The shortcoming of the available laboratory methods for determining the moisture susceptibility of asphalt mixtures has led researchers to think about providing new methods based on effective parameters on moisture damage process. Accordingly, this research is an attempt to provide a prediction model using thermodynamic and mix design parameters that can predict and analyze the performance of asphalt mix against moisture. T he results of this study indicate that the use of anti-stripping additives can generally improve the performance of asphalt mixtures against moisture; however, the type and percentage of these additives should be determined according to the type of aggregate, the type of bitumen and the properties of the mixing plan of the asphalt mix. Based on the proposed model, it can be stated that an increase in cohesion free energy, adhesion free energy, aggregate wettability by bitumen, surface area of aggregates, and apparent asphalt film thickness on the aggregate surface improve the moisture resistance of mixtures. On the other hand, debonding energy, saturation percentage, and permeability negatively affect the asphalt mixture’s resistance to moisture damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Q. J. Li, S. P. Minnekanti, G. Yang, C. Wang, Traffic inputs for pavement ME design using Oklahoma data, Inter. J. Pavement Res. Technol. 12 (2) (2019) 154–160.

    Article  Google Scholar 

  2. J. De Visscher, A. Vanelstraete, Ravelling by traffic: Performance testing and field validation, Inter. J. Pavement Res. Technol. 10 (1) (2017) 54–61.

    Article  Google Scholar 

  3. G. H. Hamedi, S. A. Tahami, The effect of using anti-stripping additives on moisture damage of hot mix asphalt, Inter. J. Adhesion Adhesives 81 (2018) 90–97.

    Article  Google Scholar 

  4. S. Caro, E. Masad, A. Bhasin, D. N. Little, Moisture susceptibility of asphalt mixtures, Part 1: mechanisms, Inter. J. Pavement Eng. 9 (2) (2008) 81–98.

    Article  Google Scholar 

  5. L. G. Cucalon, E. Kassem, D. N. Little, E. Masad, Fundamental evaluation of moisture damage in warm-mix asphalts, Road Mater. Pavement Des. 18 (sup1) (2017) 258–283.

    Article  Google Scholar 

  6. G. H. Hamedi, F. M. Nejad, Evaluating the effect of mix design and thermodynamic parameters on moisture sensitivity of hot mix asphalt, J. Mater. Civ. Eng. 29 (2) (2016) 04016207.

    Article  Google Scholar 

  7. J. S. Chen, K. Y. Lin, S. Y. Young, Effects of crack width and permeability on moisture-induced damage of pavements, J. Mater. Civ. Eng. 16 (3) (2004) 276–282.

    Article  Google Scholar 

  8. R. G. Hicks, Moisture damage in asphalt concrete. Transp. Res. Board, Washington DC, USA, Vol. 175, 1991.

    Google Scholar 

  9. M. Arabani, S. A. Tahami, G. H. Hamedi, Performance evaluation of dry process crumb rubber-modified asphalt mixtures with nanomaterial, Road Mater. Pavement Des. 19 (5) (2018) 1241–1258.

    Article  Google Scholar 

  10. G. H. Hamedi, Investigating the use of nano coating over the aggregate surface on moisture damage of asphalt mixtures, Inter. J. Civ. Eng. 16 (6) (2018) 659–669.

    Article  Google Scholar 

  11. J. Epps, E. Berger, J. N. Anagnos, Treatments, Moisture Sensitivity of Asphalt Pavements- A National SeminarCalifornia Department of Transportation; Federal Highway Administration; National Asphalt Pavement Association, California Asphalt Pavement Alliance; and Transp. Res. Board, San Diego, California, USA, 2003.

    Google Scholar 

  12. American Materials and Testing Association, Standard Practice for Effect of Water on Bituminous-Coated Aggregate Using Boiling Water. ASTM D3625 / D3625M-12. ASTM International, West Conshohocken, PA, 2012.

    Google Scholar 

  13. American Materials and Testing Association, Test Method for Coating and Stripping of Bitumen-Aggregate Mixtures. ASTM T182. ASTM International, West Conshohocken, PA, 2012.

    Google Scholar 

  14. P. S. Kandhal, Moisture susceptibility of HMA mixes: identification of problem and recommended solutions. No. NCAT 92–1. National Asphalt Pavement Association, Lanham, MD, USA, 1992.

    Google Scholar 

  15. American Materials and Testing Association, Standard Test Method for Effect of Water on Compressive Strength of Compacted Bituminous Mixtures. ASTM D1075–11. ASTM International, West Conshohocken, PA, 2011.

    Google Scholar 

  16. American Materials and Testing Association, Standard Test Method for Effect of Moisture on Asphalt Concrete Paving Mixtures. ASTM D4867 / D4867M-09(2014). ASTM International, West Conshohocken, PA, 2014.

    Google Scholar 

  17. A. R. Copeland, Influence of moisture on bond strength of asphalt-aggregate systems, (Doctoral dissertation), Vanderbilt University, Nashville, Tenn, USA, 2007.

    Google Scholar 

  18. M. Solaimanian, J. Harvey, M. Tahmoressi, V. Tandon, Test methods to predict moisture sensitivity of hot-mix asphalt pavements, Moisture Sensitivity of Asphalt Pavements-A National SeminarCalifornia Department of Transportation; Federal Highway Administration; National Asphalt Pavement Association; California Asphalt Pavement Alliance; and Transp. Res. Board, San Diego, California, USA, 2003.

    Google Scholar 

  19. P. E. Sebaaly, Comparison of lime and liquid additives on the moisture damage of hot mix asphalt mixtures, National Lime Association, Arlington, Virginia, USA, 2007.

    Google Scholar 

  20. P. Chaturabong, H. U. Bahia, The evaluation of relative effect of moisture in Hamburg wheel tracking test, Constr. Buil. Mater. 153 (2017) 337–345.

    Article  Google Scholar 

  21. U. M. Arepalli, N. M. Kottayi, R. B. Mallick, Moisture susceptibility evaluation of Hot Mix Asphalt: combined effect of traffic and moisture, Inter. J. Pavement Res. Technol. 12 (2) (2019) 206–214.

    Article  Google Scholar 

  22. M. Fakhri, H. Maleki, S. A. Hosseini, Investigation of different test methods to quantify rutting resistance and moisture damage of GFM-WMA mixtures, Constr. Buil. Mater. 152 (2017) 1027–1040.

    Article  Google Scholar 

  23. G. H. Hamedi, F. M. Nejad, Use of aggregate nanocoating to decrease moisture damage of hot mix asphalt, Road Mater. Pavement Des. 17 (1) (2016) 32–51.

    Google Scholar 

  24. G. H. Hamedi, Evaluating the effect of asphalt binder modification using nanomaterials on the moisture damage of hot mix asphalt, Road Mater. Pavement Des. 18 (6) (2017) 1375–1394.

    Article  Google Scholar 

  25. A. Azarhoosh, F. M. Nejad, A. Khodaii, Evaluation of the effect of nano-TiO2 on the adhesion between aggregate and asphalt binder in hot mix asphalt, European J. Environ. Civ. Eng. 22 (8) (2018) 946–961.

    Article  Google Scholar 

  26. C. J. Van Oss, M. K. Chaudhury, R. J. Good, Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems, Chem. Rev. 88 (6) (1988) 927–941.

    Article  Google Scholar 

  27. R. J. Good, C. J. van Oss, The modern theory of contact angles and the hydrogen bond components of surface energies, Modern approaches to wettability, Springer, Boston, MA, 1992. 1–27.

    Google Scholar 

  28. D. Myers, Surfaces, interfaces, and colloids, New York etc.: Wiley-Vch, Weinheim, Germany, Vol. 358, 1999.

    Book  Google Scholar 

  29. L. F. M. Da Silva, A. Öchsner, R. D. Adams, eds. Handbook of adhesion technology, Springer Science, Business Media, Heidelberg, Germany, 2011.

    Google Scholar 

  30. American Materials and Testing Association, Standard Test Method for Determining the Resilient Modulus of Bituminous Mixtures by Indirect Tension Test. ASTM D7369–11. ASTM International, West Conshohocken, PA, 2011.

    Google Scholar 

  31. D. W. Christensen, R. F. Bonaquist, Volumetric Requirements for Superpave Mix Design. NCHRP Report 567, Transp. Res. Board of the National Academies: Washington, DC, USA (2006).

    Google Scholar 

  32. E. Masad, B. Birgisson, A. Omari, A. Cooley, Analysis of permeability and fluid flow in asphalt mixes, J. Mater. Civ. Eng. 16 (5) (2004).

    Google Scholar 

  33. American Materials and Testing Association, Standard Provisional Test Method for Measurement of Permeability of Bituminous Paving Mixtures Using a Flexible Wall Permeameter. ASTM PS129–01. ASTM International, West Conshohocken, PA, 2001.

    Google Scholar 

  34. D. N. Little, A. Bhasin, A. Hefer, Using surface energy measurements to select materials for asphalt pavement. NCHRP project 9–37. Transp. Res. Board, Washington, DC, USA, 2006.

    Google Scholar 

  35. A. Bhasin, D. N. Little, Characterization of aggregate surface energy using the universal sorption device, J. Mater. Civ. Eng. 19 (8) (2007) 634–641.

    Article  Google Scholar 

  36. A. W. Hefer, A. Bhasin, D. N. Little, Bitumen surface energy characterization using a contact angle approach, J. Mater. Civ. Eng. 18 (6) (2006) 759–767.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Hossein Hamedi.

Additional information

Peer review under responsibility of Chinese Society of Pavement Engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejad, F.M., Asadi, M. & Hamedi, G.H. Determination of moisture damage mechanism in asphalt mixtures using thermodynamic and mix design parameters. Int. J. Pavement Res. Technol. 13, 176–186 (2020). https://doi.org/10.1007/s42947-019-0099-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-019-0099-8

Keywords

Navigation