Skip to main content
Log in

Comparison of various rutting parameters and modelling of creep and recovery behaviour of high modulus bituminous binders

  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

This paper evaluates the rut resistance of various high modulus bituminous binders based on different rutting parameters including G*/sinδ, shenoys’ rutting parameter, zero shear viscosity (ZSV), viscous component of creep stiffness (Gν) determined using burger’s model and superpave plus rutting parameter i.e. non-recoverable creep compliance (Jnr). The main objective of the study is to develop high modulus bituminous binders and evaluate their performance in terms of rutting. Also, the creep and recovery curves obtained from the MSCR test were modelled to understand the viscoelastic creep behavior of the binders. From the results, it was found that ranking provided by G*/sinδ, shenoys’ rutting parameter and ZSV approaches were identical whereas Jnr and Gν provided similar rankings. The rutting resistance improvement ratio analyzed for the binders showed the trend which is identical for G*/sinδ, shenoys’ rutting parameter and ZSV. However, the ratio is identical for Gν and Jnr. Burger’s model was unable to capture the nonlinear viscoelastic behavior of modified high modulus bituminous binders under creep and recovery loading. Weibull model was used to simulate the creep and recovery behavior. It was found to be fit well with the experimental curves. The parameters of the Weibull model was able to explain the viscoelastic behavior of binders under creep and recovery loading. The composite modification of binder enhanced both the rutting resistance and percent recovery of high modulus bituminous binders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Serfass, A. Bauduin, J. F. Garnier, High modulus asphalt mixes-laboratory evaluation, practical aspects and structural design, 7th International Conference on Asphalt Pavements, Nottingham, United Kingdom, Vol. 1, 1992.

  2. J. L. Delorme, C. De la Roche, L. Wendling, LPC bituminous mixtures design guide, Laboratoire Central des Ponts et Chaussées, Paris, France, 2007.

    Google Scholar 

  3. M. E. Nunn, T. Smith, Road trials of high modulus base for heavily trafficked roads. Report number 231. Thomas Telford, Berkshire, UK, 1997.

    Google Scholar 

  4. J. J. Komba, B. M. J. Verhaeghe, J. S. O’Connell, J. K. Anochie-Boateng, W. Nortje, Evaluation of the use of polymer modified bitumen in the production of high modulus asphalt for heavily-trafficked roads, 7th Africa Transportation Technology Transfer Conference, Bulawayo, Zimbabwe, 2015.

  5. L. Petho, A. Beecroft, J. Griffin, E. Denneman, High Modulus High Fatigue Resistance Asphalt (EME 2) Technology Transfer. Technical Report Number. AP-T283/14. Austroads, Australia, 2014.

  6. J. F. Corte, Development and uses of hard-grade asphalt and of high-modulus asphalt mixes in France, Transp. Res. Circul. 503 (2001) 12–31.

    Google Scholar 

  7. J. D’Angelo, R. Kluttz, R. N. Dongre, K. Stephens, L. Zanzotto, Revision of the superpave high temperature binder specification: the multiple stress creep recovery test (with discussion), J. Assoc. Asphalt Paving Technol. 76 (2007) 123–162.

    Google Scholar 

  8. Y. Brosseaud, F. Farcas, V. Mouillet, High modulus asphalt mixes with high rate of RA: what does it happen?, In Congrès Eurobitume Eurasphalt, Turkey, 2012, pp. 1–13.

  9. M. I. G. Hernández, High Modulus Asphalt Concrete: a Long Life Asphalt Pavement, J. Civ. Environ. Eng. 5 (5) (2015) 1.

    MathSciNet  Google Scholar 

  10. G. Caroff, Investigation of rutting of asphalt surface layers: influence of binder and axle loading configuration, Transp. Res. Rec. 1436 (1994) 28–37.

    Google Scholar 

  11. A. Golalipour, E. Jamshidi, Y. Niazi, Z. Afsharikia, M. Khadem, Effect of aggregate gradation on rutting of asphalt pavements, Proc. Soci. Behav. Sci. 53 (2012) 440–449.

    Article  Google Scholar 

  12. H. Geng, C. S. Clopotel, H. U. Bahia, Effects of high modulus asphalt binders on performance of typical asphalt pavement structures, Constr. Buil. Mater. 44 (2013) 207–213.

    Article  Google Scholar 

  13. D. A. Anderson, D. W. Christensen, H. U. Bahia, R. Dongre, M. G. Sharma, C. E. Antle, J. Button, Binder characterization and evaluation, volume 3: Physical characterization. Strategic Highway Research Program, National Research Council. Report No. SHRP-A-369. Washington DC, USA, 1994.

    Google Scholar 

  14. D. Anderson, Y. Le Hir, J. P. Planche, D. Martin, A. Shenoy, Zero shear viscosity of asphalt binders, Transp. Res. Rec. 1810 (2002) 54–62.

    Article  Google Scholar 

  15. H. U. Bahia, H. Zhai, M. Zeng, Y. Hu, P. Turner, Development of binder specification parameters based on characterization of damage behavior, J. Assoc. Asphalt Paving Technol. 70 (2001) 442–470.

    Google Scholar 

  16. J. A. D’Angelo, The relationship of the MSCR test to rutting, Road Mater. Pave. Des. 10 (sup1) (2009) 61–80.

    Article  Google Scholar 

  17. C. Celauro, C. Fecarotti, A. Pirrotta, A. C. Collop, Experimental validation of a fractional model for creep/recovery testing of asphalt mixtures, Constr. Buil. Mater. 36 (2012) 458–466.

    Article  Google Scholar 

  18. R. Delgadillo, H. U. Bahia, R. Lakes, A nonlinear constitutive relationship for asphalt binders, Mater. Struct. 45 (3) (2012) 457–473.

    Article  Google Scholar 

  19. R. Delgadillo, H. U. Bahia, The relationship between nonlinearity of asphalt binders and asphalt mixture permanent deformation, Road Mater. Pave. Des. 11 (3) (2010) 653–680.

    Article  Google Scholar 

  20. F. Merusi, Delayed mechanical response in modified asphalt binders. Characteristics, modeling and engineering implications, Road Mater. Pave. Des. 13 (sup1) (2012) 321–345.

    Article  Google Scholar 

  21. L. Shan, Y. Tan, H. Zhang, Y. Xu, Analysis of linear viscoelastic response function model for asphalt binders, J. Mater. Civ. Eng. 28 (6) (2016) 04016010.

    Article  Google Scholar 

  22. N. Saboo, P. Kumar, A study on creep and recovery behavior of asphalt binders, Constr. Buil. Mater. 9 (2015) 632–640.

    Article  Google Scholar 

  23. K. S. Fancey, A Latch-Based Weibull Model for Polymeric Creep and Recovery, J. Polymer Eng. 21 (6) (2001) 489–510.

    Article  Google Scholar 

  24. X. Liu, S. Zhang, X. Xu, Z. Zhang, L. Zhou, G. Zhang. Study on the creep and recovery behaviors of UHMWPE/CNTs composite fiber, Fibers Polymers 14 (10) (2013) 1635–1640.

    Article  Google Scholar 

  25. A. Shenoy, Refinement of the Superpave specification parameter for performance grading of asphalt, J. Transp. Eng. 127 (5) (2001) 357–362.

    Article  Google Scholar 

  26. S. Biro, T. Gandhi, S. Amirkhanim, Determination of zero shear viscosity of warm asphalt binder, Constr. Buil. Mater. 23 (2009) 2080–2086.

    Article  Google Scholar 

  27. Y. Liu, Z. You, Determining burger’s model parameters of asphalt materials using creep-recovery testing data, Pave. Mater.: Modeling, testing, and performance, Minneapolis, Minnesota, USA, 2009, pp. 26–36.

  28. Indian Roads Congress, Guidelines for the Design of Flexible Pavements, 3rd Revision. IRC: 37. New Delhi, India, 2012.

    Google Scholar 

  29. B. V. Kök, M. Yilmaz, M. Guler, Evaluation of high temperature performance of SBS+ Gilsonite modified binder, Fuel 90 (10) (2011) 3093–3099.

    Article  Google Scholar 

  30. M. Liang, Y. Hu, X. J. Kong, W. Y. Fan, X. Xin, H. Luo, Effects of SBS Configuration on Performance of High Modulus Bitumen Based on Dynamic Mechanical Analysis, Kemija u industriji 65 (7–8) (2016) 379–384.

    Article  Google Scholar 

  31. J. Liu, P. Li, Experimental study on gilsonite-modified asphalt, Airfield and Highway Pavements: Efficient Pavements Supporting Transportation’s Future, Bellevue, Washington, USA, 2008, pp. 222–228.

  32. American Society for Testing and Materials International, Standard Test Method for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer. ASTM D7175-05. West Conshohocken, PA, USA, 2005.

  33. American Society for Testing and Materials International, Standard Test Method for Multiple Stress Creep and Recovery (MSCR) of Asphalt Binder Using a Dynamic Shear Rheometer. ASTM D7405-10a. West Conshohocken, PA, USA, 2011.

  34. American Association of State Highway and Transportation Officials, Standard specification for performance-graded asphalt binder using Multiple Stress Creep Recovery (MSCR) Test. AASHTO MP 19. Washington, DC, USA, 2010.

    Google Scholar 

  35. H. Pouria, R. Mohammad, F. M. Nejad, Comparing different rutting specification parameters using high temperature characteristics of rubber-modified asphalt binders, Road Mater. Pave. Des. 16 (4) (2015) 751–766.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunkumar Goli.

Additional information

Revised version of a paper presented at 15th World Conference on Transport Research (WCTR), Bombay, Mumbai, India, 26–31 May 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goli, A., Baditha, A., Muppireddy, A.R. et al. Comparison of various rutting parameters and modelling of creep and recovery behaviour of high modulus bituminous binders. Int. J. Pavement Res. Technol. 12, 648–658 (2019). https://doi.org/10.1007/s42947-019-0077-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-019-0077-1

Keywords

Navigation