Skip to main content

Surface albedo and spring snow melt variations at Ny-Ålesund, Svalbard

Abstract

The monitoring of surface albedo using radiometric measurements is a simple but effective way to study variations in snow cover and melt timing in the high northern latitudes, where there is a clear indication of warming in response to the changing global climate. In this paper, we investigate these phenomena in the Northwest region of Svalbard using a 40-year record, combining previous data from 1981 to 1997, radiation measurements from the Baseline Surface Radiation Network (BSRN) station since 1993, and the Amundsen Nobile Climate Change Tower (CCT) since 2009. A methodology has been developed to estimate the start, duration, and end date of the spring snow melt. This has been applied to the integrated dataset for the period 1981 to 2019. Our results are in good agreement with qualitative information on snow persistence provided by webcam images archived since 2000. The date of snow melt has advanced at a rate of about 3 days per decade during the period of study, from Julian calendar date (doy) 180 in the early 1980s to 165–170 in the late 2010s. There is indication the trend has accelerated since 2010. The footprint of the radiation measurements is a crucial factor in the evaluation of surface albedo; the larger the area within the field of view of the instrument, the more representative is the measure. The assimilated 40-year dataset will provide a base for future monitoring of snow persistence at Ny-Ålesund as the climate continues to change in the region. Our work highlights the importance of technical improvements made in measurement systems and combining different techniques to monitor surface albedo. In particular, terrestrial photography, combined with broadband radiation measurements, will contribute to increased knowledge of underlying processes that determine the surface energy budget in the Arctic region. In addition, the combined ground-based measurements can be used to validate those derived from space-born platforms.

This is a preview of subscription content, access via your institution.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Bokhorst S, Pedersen SH, Brucker L, Anisimov O, Bjerke JW, Brown RD, Ehrich D, Essery RLH, Heilig A, Ingvander S (2016) Changing Arctic snow cover: a review of recent developments and assessment of future needs for observations, modelling, and impacts. Ambio 45(5):516–537. https://doi.org/10.1007/s13280-016-0770-0

    Article  Google Scholar 

  • Box JE, Colgan WT, Christensen TR, Schmidt NM, Lund M, Parmentier F-JW, Brown R, Bhatt US, Euskirchen ES, Romanovsky VE, Walsh JE, Overland JE, Wang M, Corell RW, Meier WN, Wouters B, Mernild S, Mård J, Pawlak J, Olsen MS (2018) Key indicators of Arctic climate change: 1971–2017. Environ Res Lett 14:045010. https://doi.org/10.1088/1748-9326/aafc1b

    Article  Google Scholar 

  • Brown R, Deksen C, Wang L (2010) A multi-dataset analysis of variability and change in Arctic spring snow cover extent. J Geophys Res 115:D16111. https://doi.org/10.1029/2010JD013975

    Article  Google Scholar 

  • Cohen JL, Furtado JC, Barlow M, Alexeev V, Cherry JE (2012) Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ Res Lett 7(1):014007. https://doi.org/10.1088/1748-9326/7/1/014007

    Article  Google Scholar 

  • Cox CJ, Stone RS, Douglas DC, Stanitski DM, Divoky GJ, Dutton GS, Sweeney C, George JC, Longenecker DU (2017) Drivers and environmental responses to the changing annual snow cycle of northern Alaska. Bull Am Meteor Soc. https://doi.org/10.1175/BAMS-D-16-0201.1

    Article  Google Scholar 

  • Driemel A, Augustine J, Behrens K, Colle S, Cox C, Cuevas-Agulló E, Denn FM, Duprat T, Fukuda M, Grobe H, Haeffelin M, Hodges G, Hyett N, Ijima O, Kallis A, Knap W, Kustov V, Long CN, Longenecker D, Lupi A, Maturilli M, Mimouni M, Ntsangwane L, Ogihara H, Olano X, Olefs M, Omori M, Passamani L, Bueno Pereira E, Schmithüsen H, Schumacher S, Sieger R, Tamlyn J, Vogt R, Vuilleumier L, Xia X, Ohmura A, König-Langlo G (2018) Baseline Surface Radiation Network (BSRN): structure and data description (1992–2017). Earth Syst Sci Data 10(3):1491–1501. https://doi.org/10.5194/essd-201

    Article  Google Scholar 

  • Kassianov E, Barnard J, Flynn C, Riihimaki L, Michalsky J, Hodges G (2014) Areal-averaged spectral surface albedo from ground-based transmission data alone: toward an operational retrieval. Atmosphere 5:597–621. https://doi.org/10.3390/atmos5030597

    Article  Google Scholar 

  • Kupfer H, Herber A, König-Langlo G (2006) Radiation measurements and synoptic observations at Ny-Alesund, Svalbard. Reports on Polar Research 538. Alfred Wegener Institute for Polar and Marine Research, Bremerhaven. hdl:10013/epic.10543.d001

  • Hernandez-Henriquez MA, Dery SJ, Derksen C (2015) Polar amplification and elevation-dependence in trends of Northern Hemisphere snow cover extent, 1971–2014. Environ Res Lett 10:044010

    Article  Google Scholar 

  • Loranty MM, Goetz SG, Beck PSA (2011) Tundra vegetation effects on pan-Arctic albedo, Environ Res Lett 6: 7 stacks.iop.org/ERL/6/024014

  • Maturilli M, Hanssen-Bauer I, Neuber R, Rex M, Edvardsen K (2019) The atmosphere above Ny-Ålesund: climate and global warming, ozone and surface UV radiation. In: Hop H, Wiencke C (ed) The Ecosystem of Kongsfjorden, Svalbard. Advances in Polar Ecology, vol 2. Springer, Cham, pp 23–46. https://doi.org/10.1007/978-3-319-46425-1_2

  • Maturilli M, Herber A, Langlo GK (2015) Surface radiation climatology for Ny-Ålesund, Svalbard (78.9°), basic observations for trend detection. Theor Appl Climatol 120:331–339. https://doi.org/10.1007/s00704-014-1173-4

    Article  Google Scholar 

  • Mazzola M, Viola AP, Lanconelli C, Vitale V (2016) Atmospheric observations at the Amundsen-Nobile Climate Change Tower in Ny-Alesund, Svalbard. Rend Fis Acc Lincei 27(Suppl 1):S7–S18. https://doi.org/10.1007/s12210-016-0540-8

    Article  Google Scholar 

  • Mudryk L, Chereque AE, Brown R, Derksen C, Luojus K, Decharme B (2020) Terrestrial snow cover. NOAA Arctic Report Card 2020. https://doi.org/10.25923/p6ca-v923

  • Myhre G, Lund Myhre C, Forster M, Shine KP (2017) Halfway to doubling of CO2 radiative forcing. Nature Geosci 10:710–711. https://doi.org/10.1038/ngeo3036

    Article  Google Scholar 

  • Pedersen C (2013) Zeppelin Web Camera Time Series . Norwegian Polar Institute. https://doi.org/10.21334/npolar.2013.9fd6dae0, accessed 23/05/2021

  • Qu X, Hall A (2014) On the persistent spread in snow-albedo feedback. Clim Dyn 42:69–81

    Article  Google Scholar 

  • Salzano R, Salvatori R, Valt M, Giuliani G, Chatenoux B, Ioppi L (2019) Automated classification of terrestrial images: the contribution to the remote sensing of snow cover. Geosciences 9(2):97. https://doi.org/10.3390/geosciences9020097

    Article  Google Scholar 

  • Salzano R, Aalstad K, Boldrini E, Gallet JC, Kępski D, Luks B, Nilsen L, Salvatori R, Westermann S (2021) Terrestrial photography applications on snow cover in Svalbard (PASSES). In: Moreno-Ibáñez et al (ed) SESS report 2020 - The State of Environmental Science in Svalbard - an annual report, Svalbard Integrated Arctic Earth Observing System, Longyearbyen, pp. 236–251. https://doi.org/10.5281/zenodo.4294084

  • Santolaria-Otin M, Zolina O (2020) Evaluation of snow cover and snow water equivalent in the continental Arctic in CMIP5 models. Clim Dyn 55:2993–3016. https://doi.org/10.1007/s00382-020-05434-9

    Article  Google Scholar 

  • Serreze MC, Barry RG (2011) Processes and impacts of Arctic amplification: a research synthesis. Glob Planet Chang 77:85–96

    Article  Google Scholar 

  • Stone RS, Dutton EG, Harris JM, Longenecker D (2002) Earlier spring snowmelt in northern Alaska as an indicator of climate change. J Geophys Res 107(D10):ACL10-1-ACL10-13. https://doi.org/10.1029/2000JD000286

    Article  Google Scholar 

  • Thackeray CW, Fletcher CG (2016) Snow albedo feedback: current knowledge, importance, outstanding issues and future directions. Prog Phys Geogr 40:392–408

    Article  Google Scholar 

  • Uttal T, Starkweather S, Drummond JR, Vihma T, Makshtas AP, Darby LS, Burkhart JF, Cox CJ, Schmeisser LN, Haiden T, Maturilli M, Shupe MD, de Boer G, Saha A, Grachev AA, Crepinsek SM, Bruhwiler L, Goodison B, McArthur B, Walden VP, Dlugokencky EJ, Persson POG, Lesins G, Laurila T, Ogren JA, Stone R, Long CN, Sharma S, Massling A, Turner DD, Stanitski DM, Asmi E, Aurela M, Skov H, Eleftheriadis K, Virkkula A, Platt A, Førland EJ, Iijima Y, Nielsen IE, Bergin MH, Candlish L, Zimov NS, Zimov SA, O’Neill NT, Fogal PF, Kivi R, Konopleva-Akish EA, Verlinde J, Kustov VY, Vasel B, Ivakhov VM, Viisanen Y, Intrieri JM (2016) International Arctic Systems for Observing the Atmosphere: an international polar year legacy consortium. Bull Am Meteor Soc 97(6):1033–1056. https://doi.org/10.1175/BAMS-D-14-00145.1

    Article  Google Scholar 

  • Wang L, Derksen C, Brown R, Markus T (2013) Recent changes in pan Arctic melt onset from satellite passive microwave measurements. Geophys Res Lett 40(3):522–558

    Article  Google Scholar 

  • Warren SG, Brandt RE, Hinton PO (1998) Effect of surface roughness on bidirectional reflectance of Antarctic snow. J Geophys Res 103(11):25789–25807. https://doi.org/10.1029/98JE01898

    Article  Google Scholar 

  • Westermann S, Luers J, Langer M, Piel K, Boike J (2009) The annual surface energy budget of a high-Arctic permafrost site on Svalbard, Norway. Cryosphere 3:245–263. https://doi.org/10.5194/tc-3-245-2009

    Article  Google Scholar 

  • Winther JG, Godtliebsen F, Gerland S, Isachsen PE (2002) Surface albedo in Ny-Ålesund, Svalbard: variability and trends during 1981–1997. Glob Planet Chang 32:127–139. https://doi.org/10.1016/S0921-8181(01)00103-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all operators at the “Stazione Dirigibile Italia” for the logistic support that made it possible to perform continuous radiometric observations at the CCT. The authors also thank CNR-DSSTTA for the station management and the economic sustain to long-term observation activities at the Italian Arctic station. The implementation of the radiometric measurements at CCT was made in the framework of the Climate Change Tower-Integrated Project (CCT-IP) in 2009 and sustained by two projects of significant national interest (PRIN) funded by the Ministry of Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Becherini.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Becherini, F., Vitale, V., Lupi, A. et al. Surface albedo and spring snow melt variations at Ny-Ålesund, Svalbard. Bull. of Atmos. Sci.& Technol. 2, 14 (2021). https://doi.org/10.1007/s42865-021-00043-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42865-021-00043-8

Keywords

  • Surface albedo
  • Snow melt
  • Climate change
  • Svalbard