Skip to main content

A network of water vapor Raman lidars for improving heavy precipitation forecasting in southern France: introducing the WaLiNeAs initiative

Abstract

Extreme heavy precipitation events (HPEs) pose a threat to human life but remain difficult to predict because of the lack of adequate high frequency and high-resolution water vapor (WV) observations in the low troposphere (below 3 km). To fill this observational gap, we aim at implementing an integrated prediction tool, coupling network measurements of WV profiles, and a numerical weather prediction model to precisely estimate the amount, timing, and location of rainfall associated with HPEs in southern France (struck by ~ 7 HPEs per year on average during the fall). The Water vapor Lidar Network Assimilation (WaLiNeAs) project will deploy a network of 6 autonomous Raman WV lidars around the Western Mediterranean to provide measurements with high vertical resolution and accuracy to be assimilated in the French Application of Research to Operations at Mesoscale (AROME-France) model, using a four-dimensional ensemble-variational approach with 15-min updates. This integrated prediction tool is expected to enhance the model capability for kilometer-scale prediction of HPEs over southern France up to 48 h in advance. The field campaign is scheduled to start early September 2022, to cover the period most propitious to heavy precipitation events in southern France. The Raman WV lidar network will be operated by a consortium of French, German, Italian, and Spanish research groups. This project will lead to recommendations on the lidar data processing for future operational exploitation in numerical weather prediction (NWP) systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Balin I, Serikov I, Bobrovnikov S, Simeonov V, Calpini B, Arshinoc Y, van den Bergh H (2004) Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational–pure-rotational Raman lidar. Appl Phys B 79:775–782

    Article  Google Scholar 

  • Baron A, Chazette P, Totems J (2020) Remote sensing of two exceptional winter aerosol pollution events and representativeness of ground-based measurements. Atmos Chem Phys 20:6749–6768. https://doi.org/10.5194/acp-20-6749-2020

    Article  Google Scholar 

  • Behrendt A, Pal S, Aoshima F, Bender M, Blyth A, Corsmeier U, Cuesta J, Dick G, Dorninger M, Flamant C, Di Girolamo P, Gorgas T, Huang Y, Kalthoff N, Khodayar S, Mannstein H, Träumner K, Wieser A, Wulfmeyer V (2011) Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP8b. Q J Roy Meteorol Soc 137(S1):81–100

    Article  Google Scholar 

  • Bielli S, Grzeschik M, Richard E, Flamant C, Champollion C, Kiemle C, Dorninger M, Brousseau P (2012) Assimilation of water vapour airborne lidar observations: impact study on the COPS precipitation forecasts. Q J Roy Meteorol Soc 138:1652–1667

    Article  Google Scholar 

  • Brocard E, Philipona R, Haefele A, Romanens G, Mueller A, Ruffierux D, Simeonov V, Calpini B (2013) 2013: Raman Lidar for Meteorological Observations, RALMO – Part 2: validation of water vapor measurements. Atmos Meas Tech 6:1347–1358. https://doi.org/10.5194/amt-6-1347-2013

    Article  Google Scholar 

  • Brousseau P, Seity Y, Ricard D, Léger J (2016) Improvement of the forecast of convective activity from the AROME-France system. Q J R Meteorol Soc 142(699):2231–2243

    Article  Google Scholar 

  • Caumont O, Mandement M, Bouttier F, Eeckman J, Lebeaupin Brossier C, Lovat A, Nuissier O, Laurantin O (2021) The heavy precipitation event of 14–15 October 2018 in the Aude catchment: a meteorological study based on operational numerical weather prediction systems and standard and personal observations. Nat Hazards Earth Syst Sci 21:1135–1157

    Article  Google Scholar 

  • Chazette P, Dabas A, Sanak J, Lardier M, Royer P (2012) French airborne lidar measurements for Eyjafjallajökull ash plume survey. Atmos Chem Phys 12:7059–7072. https://doi.org/10.5194/acp-12-7059-2012

    Article  Google Scholar 

  • Chazette P, Marnas F, Totems J, Shang X (2014) Comparison of IASI water vapor retrieval with H2O-Raman lidar in the framework of the Mediterranean HyMeX and ChArMEx programs. Atmos Chem Phys 14:9583–9596. https://doi.org/10.5194/acp-14-9583-2014

    Article  Google Scholar 

  • Chazette P, Flamant C, Raut J-C, Totems J, Shang X (2016a) Tropical moisture enriched storm tracks over the Mediterranean and their link with intense rainfall in the Cevennes-Vivarais area during HyMeX. Q J Roy Meteorol Soc 142(S1):320–334. https://doi.org/10.1002/qj.2674

    Article  Google Scholar 

  • Chazette P, Flamant C, Shang X, Totems J, Raut J-C, Doerenbecher A, Ducrocq V, Fourrié N, Bock O, Dorenbecher A, Cloché S (2016b) multi-instrument and multi-model assessment of atmospheric moisture variability over the Western Mediterranean during HyMeX. Q J R Meteorol Soc 142(S1):7–22. https://doi.org/10.1002/qj.2671

    Article  Google Scholar 

  • Chazette P, Totems J, Baron A, Flamant C, Bony S (2020) Trade-wind clouds and aerosols characterized by airborne horizontal lidar measurements during the EUREC4A field campaign, Earth Syst. Sci. Data. Earth Syst Sci Data 12:2919–2936

    Article  Google Scholar 

  • Chazette P, Totems J, Shang X (2017) Atmospheric aerosol variability above the Paris Area during the 2015 heat wave - Comparison with the 2003 and 2006 heat waves. Atmos Environ 170. https://doi.org/10.1016/j.atmosenv.2017.09.055

  • Chazette P, Totems J, Shang X (2019) Transport of aerosols over the French Riviera – link between ground-based lidar and spaceborne observations. Atmos Chem Phys 19:3885–3904. https://doi.org/10.5194/acp-19-3885-2019

    Article  Google Scholar 

  • Chazette P, Flamant C, Sodemann H, Totems J, Monod A, Dieudonné E, Baron A, Seidl A, Steen-Larsen H-C, Doira P, Durand A, Ravier S (2021) The lacustrine-water vapor isotope inventory experiment L-WAIVE. Atmos Chem Phys 21:10911–10937

    Article  Google Scholar 

  • Desroziers G, Camino J-T, Berre L (2014) 4DEnVar: link with 4D state formulation of variational assimilation and different possible implementations. Q.J.R. Meteorol Soc 140:2097–2110. https://doi.org/10.1002/qj.2325

    Article  Google Scholar 

  • Di Girolamo P, De Rosa B, Flamant C, Summa D, Bousquet O, Chazette P, Totems J, Cacciani M (2020) Water vapour mixing ratio and temperature intercomparison results in the framework of the hydrological cycle in the Mediterranean experiment – special observation period 1. Bull Atmos Sci Tech 1:133–153

    Google Scholar 

  • Di Girolamo P, Cacciani M, Summa D, Scoccione A, De Rosa B, Behrendt A, Wulfmeyer V (2017) Characterisation of boundary layer turbulent processes by the Raman Lidar BASIL in the frame of HD(CP)2 observational prototype experiment. Atmos Chem Phys 17:745–767. https://doi.org/10.5194/acp-17-745-2017

    Article  Google Scholar 

  • Di Girolamo P, Flamant C, Cacciani M, Richard E, Ducrocq V, Summa D, Stelitano D, Fourrié N, Said F (2016) Observation of low-level wind reversals over the Gulf of Lion and their impact on the water vapour variability. Q J R Meteorol Soc 142(S1):153–172. https://doi.org/10.1002/qj.2767

    Article  Google Scholar 

  • Di Girolamo P, Summa D, Sabatino D, Ferretti R, Faccani C (2009) Multiparameter Raman Lidar measurements for the characterization of a dry stratospheric intrusion event. J Atmos Oceanic Technol 26:1742–1762. https://doi.org/10.1175/2009JTECHA1253.1 (ISSN: 0739-0572)

    Article  Google Scholar 

  • Dinoev T, Simeonov VB, Arshinov Y, Bobrovnikov S, Ristori P, Calpini B, Parlange M, van den Bergh H (2013) Raman Lidar for meteorological observations, RALMO. Part 1: Instrument description. Atmos Meas Tech 6:1329–1346

    Article  Google Scholar 

  • Ducrocq V, Nuissier O, Ricard D, Lebeaupin C, Thouvenin T (2008) A numerical study of three catastrophic precipitating events over southern France. II: Mesoscale triggering and stationarity factors. Q J R Meteorol Soc 134:131–145. https://doi.org/10.1002/qj.199

    Article  Google Scholar 

  • Ducrocq V et al (2014) HyMeX-SOP1, the field campaign dedicated to heavy precipitation and flash flooding in the northwestern Mediterranean. Bull Am Meteo Soc 95:1083–1100

    Article  Google Scholar 

  • Duffourg F, Nuissier O, Ducrocq V, Flamant C, Chazette P, Delanoë J, Doerenbecher A, Fourrié N, Di Girolamo P, Lac C, Legain D, Martinet M, Saïd F, Bock O (2016) Offshore deep convection initiation and maintenance during HyMeX IOP 16a heavy precipitation event. Q J R Meteorol Soc 142(S1):259–274. https://doi.org/10.1002/qj.2725

    Article  Google Scholar 

  • Duffourg F, Lee K-O, Ducrocq V, Flamant C, Chazette P, Di Girolamo P (2018) Role of moisture patterns in the backbuilding formation of HyMeX IOP13 Heavy Precipitating Systems. Q J R Meteorol Soc 144:291–303

    Article  Google Scholar 

  • Duffourg F, Ducrocq V (2013) Assessment of the water supply to Mediterranean heavy precipitation : a method based on finely designed water budgets. Atmos Sci Lett 14(3):133–138

    Article  Google Scholar 

  • Fourrié N, Nuret M, Brousseau P, Caumont O (2021) Data assimilation impact studies with the AROME-WMED reanalysis of the first special observation period of the Hydrological cycle in the Mediterranean Experiment. Nat Hazards Earth Syst Sci 21:463–480. https://doi.org/10.5194/nhess-21-463-2021

    Article  Google Scholar 

  • Fourrié N, Nuret M, Brousseau P, Caumont O, Doerenbecher A, Wattrelot E, Moll P, Bénichou H, Puech D, Bock O, Bosser O, Chazette P, Flamant C, Di Girolamo P, Richard E, Saïd F (2019) The AROME-WMED reanalyses of the first special observation period of the hydrological cycle in the Mediterranean experiment. Geophys Model Dev 12:2657–2678

    Article  Google Scholar 

  • Fourrié N, Bresson É, Nuret M, Jany C, Brousseau P, Doerenbecher A, Kreitz M, Nuissier O, Sevault E, Bénichou H, Amodei M, Pouponneau F (2015) AROME-WMED, a real-time mesoscale model designed for the HyMeX special observation periods. Geosci Model Dev 8:1919–1941

    Article  Google Scholar 

  • Gaume E et al (2009) A compilation of data on European flash floods. J Hydrol 367:70–78

    Article  Google Scholar 

  • Grzeschik M, Bauer H-S, Wulfmeyer V, Engelbart D, Wandinger U, Mattis I, Althausen D, Engelmann R, Tesche M, Riede A (2008) Four dimensional variational data analysis of water vapor Raman lidar data and their impact on mesocale forecasts. J Atmos Ocean Technol 25:1437–1453

    Article  Google Scholar 

  • Goldsmith JE, Blair FH, Bisson SE, Turner DD (1998) Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. Appl Opt 37:4979–4990

    Article  Google Scholar 

  • Gustafsson N, Janjić T, Schraff C, Leuenberger D, Weissmann M, Reich H, Brousseau P, Montmerle T, Wattrelot E, Bučánek A, Mile M, Hamdi R, Lindskog M, Barkmeijer J, Dahlbom M, Macpherson B, Ballard S, Inverarity G, Carley J, Alexander C, Dowell D, Liu S, Ikuta Y, Fujita T (2018) Survey of data assimilation methods for convective-scale numerical weather prediction at operational centres. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3179

    Article  Google Scholar 

  • Khodayar S, Czajka B, Caldas-Alvarez A, Helgert S, Flamant C, Di Girolamo P, Bock O, Chazette P (2018) Multi-scale observations of moisture feeding heavy precipitating systems in the Northwestern Mediterranean during HyMeX IOP12. Q J R Meteorol Soc 144:2761–2780

    Article  Google Scholar 

  • Kwon I-H, English S, Bell W, Potthast R, Collard A, Ruston B (2018) Assessment of progress and status of data assimilation in numerical weather prediction. Bull Amer Meteorol Soc 98:ES75–ES79

    Article  Google Scholar 

  • Lange D, Behrendt A, Wulfmeyer V (2019) Compact operational tropospheric water vapor and temperature Raman lidar with turbulence resolution. Geophys Res Lett 46:14844–14853. https://doi.org/10.1029/2019GL085774

    Article  Google Scholar 

  • Lenschow DH, Wulfmeyer V, Senff C (2000) Measuring second-through fourth-order moments in noisy data. J Atmos Oceanic Technol 17(10):1330–1347

    Article  Google Scholar 

  • Leuenberger D, Haefele A, Omanovic N, Fengler M, Martucci G, Calpini B, Fuhrer O, Rossa A (2020) Improving high-impact numerical weather prediction with Lidar and drone observations. Bull Amer Meteorol Soc 101:1036–1051. https://doi.org/10.1175/BAMS-D-19-0119.1

    Article  Google Scholar 

  • Llasat C, Llasat-Botija M, Petrucci O, Pasqua AA, Rosselló J, Vinet F, Boissier L (2013) Towards a database on societal impact of Mediterranean floods within the framework of the HYMEX project. Nat Hazards Earth Syst Sci 13:1337–1350

    Article  Google Scholar 

  • Majumdar SJ (2016) A review of targeted observations. Bull Am Meteor Soc 97(12):2287–2303. https://doi.org/10.1175/bams-d-14-00259.1

    Article  Google Scholar 

  • Montmerle T, Michel Y, Arbogast E, Ménétrier B, Brousseau P (2018) A 3D ensemble variational data assimilation scheme for the limited-area AROME model: formulation and preliminary results. Q J R Meteorol Soc 144:2196–2215. https://doi.org/10.1002/qj.3334

    Article  Google Scholar 

  • Muñoz-Porcar C, Sicard M, Granados-Muñoz MJ, Barragán R, Comerón A, Rocadenbosh F, Rodríguez-Gómez A, Garcia-Vizcaino D (2021) Synergy of Raman Lidar and modeled temperature for relative humidity profiling: assessment and uncertainty analysis. IEEE Trans Geosci Remote Sens 59:1–12

    Article  Google Scholar 

  • Muñoz-Porcar C, Comerón A, Sicard M, Barragán R, Garcia-Vizcaino D, Rodríguez-Gómez A, Rocadenbosh F, Granados-Muñoz MJ (2018) Calibration of Raman lidar water vapor mixing ratio measurements using zenithal measurements of diffuse sunlight and a radiative transfer model. IEEE Trans Geosci Remote Sens 56:7405–7414

    Article  Google Scholar 

  • Nuissier O, Ducrocq V, Ricard D, Lebeaupin C, Anquetin S (2008) A numerical study of three catastrophic precipitating events over southern France. I: Numerical framework and synoptic ingredients. Q J R Meteorol Soc 134:111–130. https://doi.org/10.1002/qj.200

    Article  Google Scholar 

  • Reichardt J, Wandinger U, Klein V, Mattis I, Hilber B, Begbie R (2012) RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements. Appl Opt 51:8111–8131

    Article  Google Scholar 

  • Ribes A, Thao S, Vautard R, Dubuisson B, Somot S, Colin J, Planton S, Soubeyroux J-M (2019) Observed increase in extreme daily rainfall in the French Mediterranean. Clim Dyn 52:1095–1114. https://doi.org/10.1007/s00382-018-4179-2

    Article  Google Scholar 

  • Ricard DV, Ducrocq, and L. Auger, (2012) A climatology of the mesoscale environment associated with heavily precipitating events over a northwestern Mediterranean area. J Appl Meteor Climatol 51:468–488

    Article  Google Scholar 

  • Richard E, Fourrié N, Faivre M, Bielli S, Flamant C (2014) Assimilation of LEANDRE II water observations: impact study on the HyMeX SOP1 precipitation forecasts, 8th HyMeX workshop, Sep 2014. La Valletta, Malta, pp 15–18

    Google Scholar 

  • Seity Y, Brousseau P, Malardel S, Hello G, Bénard P, Bouttier F, Lac C, Masson V (2011) The AROME-France convective scale operational model. Mon Weather Rev 139:976–991

    Article  Google Scholar 

  • Stelitano D, Di Girolamo P, Scoccione A, Summa D, Cacciani M (2019) Characterization of atmospheric aerosol optical properties based on the combined use of a ground-based Raman lidar and an airborne optical particle counter in the framework of the Hydrological Cycle in the Mediterranean Experiment – Special Observation Period 1. Atmos Meas Tech 12:2183–2199. https://doi.org/10.5194/amt-12-2183-2019

    Article  Google Scholar 

  • Stevens B, Bony S, Farrell D, Ament F, Blyth A, Fairall C, Karstensen J, Quinn P, Speich S, Aemisegger F, Albright AL, Bodenschatz E, Caesar K-A, Chewitt-Lucas R, Delanoë J, De Boer G, Ewald F, Forde M, George G, Hausold A, Hagen M, Hirsch L, Jansen F, Kinne S, Klocke D, Kölling T, Konow H, Mohr W, Naumann AK, Nuijens L, Pincus R, Reverdin G, Roberts G, Schnitt S, Sullivan P, Touzé-Peiffer L, Vial J, Vogel R, Acquistapace C, Alexander N, Alves L, Arixi S, Asmath H, Bagheri G, Bailey A, Baranowski D, Baron A, Barrau S, Barrett PA, Behrendt A, Bellenger H, Bendinger A, Beucher F, Bigorre S, Blossey P, Bock O, Bosser P, Bourras D, Bouruet-Aubertot P, Bower K, Branger H, Brennek M, Brewer A, Brilouet P-E, Brügmann B, Buehler SA, Burke E, Burton R, Böing S, Calmer R, Canonici J-C, Carton X, Cato GJ, Charles JA, Chazette P, Chen Y, Choularton T, Chuang P, Clarke S, Coe H, Cornet C, Coutris P, Couvreux F, Crewell S, Cronin T, Cui Z, Cuypers Y, Daley A, Damerell GM, Dauhut T, De Graaf D, De Groot G, De Szoeke SP, Denby L, Deneke H, Desbios J-P, Douet V, Drushka K, Dütsch M, Ehrlich A, Emanuel K, Emmanouilidis A, Etienne J-C, Etienne-Leblanc S, Faure G, Feingold G, Ferrero L, Fildier B, Fix A, Flamant C, Flatau PJ, Foltz GR, Forster L, Gadian A, Galewsky J, Gallagher M, Gallimore P, Gaston C, Gentemann C, Geyskens N, Giez A, Gourbeyre C, Gross S, Grosz R, Gutleben M, Güttler J, Hall K, Harris G, Helfer KC, Henze D, Herbert C, Heywood KJ, Holanda B, Ibanez-Landeta A, Intrieri J, Iyer S, Jacob M, Julien F, Kalesse H, Kazil J, Kellman A, Kirchner U, Klingebiel M, Kremper LA, Kretzschmar J, Krüger O, Kurz A, Körner M, L’Hégaret P, Lachlan-Cope T, Laing A, Landschützer P, Lang T, Lange D, Lange I, Laplace C, Laxenaire R, Le Bihan C, Leandro M, Lefevre N, Lenschow D, Li Q, Lloyd G, Los S, Losi N, Lothon M, Lovell O, Luneau C, Makuch P, Malinowski S, Manta G, Marinou E, Marsden N, Matthieu L, Maury N, Mayer B, Mayers-Als M, Mazel C, McGeary W, McWilliams JC, Mech M, Mehlmann M, Meroni AN, Mieslinger T, Minikin A, Morfa Avalos Y, Muller C, Musat I, Möller G, Napoli A, Neuberger A, Noone D, Nordsiek F, Nowak JL, Olivier L, Oswald L, Parker DJ, Peck C, Person R, Plueddemann A, Pologne L, Posyniak M, Prange M, Pöhlker M, Pöhlker C, Pörtge V, Pöschl U, Quiñones Meléndez E, Radtke J, Ramage K, Reimann J, Renault L, Reus K, Reyes A, Ribbe J, Ringel M, Ritschel M, Rocha CB, Rochetin N, Rollo C, Röttenbacher J, Saffin L, Sandiford S, Sandu I, Schemann V, Schirmacher I, Schlenczek O, Schmidt J, Schröder M, Schulz H, Schwarzenboeck A, Schäfer M, Sealy A, Serikov I, Shohan S, Siddle E, Siebesma AP, Späth F, Stephan CC, Stolla MK, Szkółka W, Tarot S, Tetoni E, Thompson E, Thomson J, Tomassini L, Totems J, Villiger L, Walther A, Webber B, Wendisch M, Whitehall S, Wiltshire A, Wing AA, Wirth M, Wiskand J, Wolf K, Worbes L, Wright E, Wulfmeyer V, Young S, Zhang D, Zhang C, Ziemen F, Zinner T, Zuidema P, Zöger M (2021) EUREC4A. Earth Syst Sci Data. https://doi.org/10.5194/essd-2021-18

  • Thundathil R, Schwitalla T, Behrendt A, Muppa SK, Adam S, Wulfmeyer V (2020) Assimilation of lidar water vapour mixing ratio and temperature profiles into a convection-permitting model. J Meteorol Soc Jpn 98:959–986

    Article  Google Scholar 

  • Totems J, Chazette P, Raut J-C, J. (2019) Accuracy of current Arctic springtime water vapour estimates, assessed by Raman lidar. Q J R Meteorol Soc 145(720):1234–1249. https://doi.org/10.1002/qj.3492

    Article  Google Scholar 

  • Weckwerth T, Parsons D, Koch S, Moore J, Lemone P, Demoz B, Flamant C, Geerts B, Wang J, Feltz W (2004) An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull Amer Meteorol Soc 85:253–277

    Article  Google Scholar 

  • Wulfmeyer V, Hardesty RM, Turner DD, Behrendt A, Cadeddu MP, Di Girolamo P, Schlüssel P, Van Baelen J, Zus F (2015) A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles. Rev Geophys 53:819–895

    Article  Google Scholar 

  • Wulfmeyer V, Bauer H-S, Grzeschik M, Behrendt A, Vandenberghe F, Browell EV, Ismail S, Ferrare RA (2006) Four-dimensional variational assimilation of water vapor differential absorption lidar data: the first case study within IHOP-2002. Mon Weather Rev 134:209–230

    Article  Google Scholar 

  • Yoshida S, Yokota S, Seko H, Sakai T, Nagai T (2020) Observation system simulation experiments of water vapor profiles observed by Raman lidar using LETKF system. SOLA 16:43–50. https://doi.org/10.2151/sola.2020-008

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Evelyne Richard and Mathieu Nuret, now retired, who have contributed to the original version of the WaLiNeAs proposals submitted to ANR in 2018 and 2019. The authors wish to thank the reviewers for their time and their thoughtful comments that helped improve the manuscript.

Funding

This work is a follow on initiative to the HyMeX programme supported by MISTRALS and the Agence Nationale de la Recherche WaLiNeAs Grant ANR-20-CE04-0001. Additional funding was also obtained from the H2020 program of the European Union (grant agreement nos. 654109, 778349, 871115), the Spanish Ministry of Science and Innovation (ref. PID2019-103886RB-I00), the Spanish Ministry of Economy, Industry and Competitiveness (ref. CGL2017-90884-REDT), and the Unit of Excellence Maria de Maeztu (ref. MDM-2016–0600) financed by the Spanish Agencia Estatal de Investigación.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrille Flamant.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Flamant, C., Chazette, P., Caumont, O. et al. A network of water vapor Raman lidars for improving heavy precipitation forecasting in southern France: introducing the WaLiNeAs initiative. Bull. of Atmos. Sci.& Technol. 2, 10 (2021). https://doi.org/10.1007/s42865-021-00037-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42865-021-00037-6

Keywords

  • Remote sensing
  • Numerical weather prediction model
  • AROME
  • Assimilation
  • Western Mediterranean