Skip to main content
Log in

Sulfonated poly (aryl ether ketone sulfone) modified by polyoxometalates LaW10 clusters for proton exchange membranes with high proton conduction performance

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

Polyoxometalates (POMs) are classified as solid superacids which can exhibit notable proton conductivity, making them a promising functional inorganic filler for enhancing the proton conductivity of proton exchange membranes (PEMs). In this study, a series of hybrid membranes were obtained by molecular-level hybridization of Weakley-type POM Na7H2LaW10O36 (LaW10) clusters into sulfonated poly (aryl ether ketone sulfone) (SPAEKS). All hybrid membranes exhibited greater proton conductivity than the pristine membrane in the 30–80 °C temperature range. When the doping amount of LaW10 reached 7 wt.%, the proton conductivity of M-LaW10-7 achieved 64 mS·cm−1 at 80 °C. Lanthanide ions' high coordination number property and variable coordination environment can aid to attract more water molecules from the environment. LaW10 and these bound water can construct denser hydrogen bonds with –SO3H of SPAEKS. These intensive hydrogen bonds will facilitate the constitution of more continuous proton transport channels, and improve the proton conductivity of the hybrid membrane. This work offers a fresh approach to using POMs containing rare-earth components in PEMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data generated during and/or analysed in this article are available from the corresponding author on reasonable request.

References

  1. Song Y, Cao X, Liang Q, Jin Y, Qi Y, Hu W, Li K, Jiang Z, Liu B. Sulfonated polyimides and their polysilsesquioxane hybrid membranes for fuel cells. Solid State Ion. 2014;258:92. https://doi.org/10.1016/j.ssi.2014.02.009.

    Article  CAS  Google Scholar 

  2. Xu D, Xu J, Wang X, Wang Z. Excellent performance of resistance methanol of a novel sulfonated poly (aryl ether ketone sulfone)/poly (vinylalcohol) composite membrane for direct methanol fuel cell applications. Int J Hydrog Energy. 2016;41(45):20536. https://doi.org/10.1016/j.ijhydene.2016.08.113.

    Article  CAS  Google Scholar 

  3. Zhang Z, Ren J, Ju M, Chen X, Xu J, Wang Z, Meng L, Zhao P, Wang H. Construction of new alternative transmission sites by incorporating structure-defect metal-organic framework into sulfonated poly(arylene ether ketone sulfone)s. Int J Hydrog Energy. 2021;46(53):27193. https://doi.org/10.1016/j.ijhydene.2021.05.167.

    Article  CAS  Google Scholar 

  4. Xu J, Chen X, Ju M, Ren J, Zhao P, Meng L, Lei J, Shi Q, Wang Z. Sulfonated poly (ether ketone sulfone) composite membranes containing ZIF-67 coordinate graphene oxide showing high proton conductivity and improved physicochemical properties. J Ind Eng Chem. 2023;119:439. https://doi.org/10.1016/j.jiec.2022;11:066.

    Article  CAS  Google Scholar 

  5. Chen X, Shi Q, Xu J, Ju M, Ren J, Zhao P, Meng L, Lei J, Wang Z. Enhanced proton conductivity of poly (arylene ether ketone sulfone) containing uneven sulfonic acid side chains by incorporating imidazole functionalized metal-organic framework. Int J Hydrog Energy. 2022;47(11):7443. https://doi.org/10.1016/j.ijhydene.2021.12.087.

    Article  CAS  Google Scholar 

  6. Zuo P, Ye C, Jiao Z, Luo J, Fang J, Schubert US, McKeown NB, Liu TL, Yang Z, Xu T. Near-frictionless ion transport within triazine framework membranes. Nature. 2023;617:299. https://doi.org/10.1038/s41586-023-05888-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheng H, Xu J, Ma L, Xu L, Liu B, Wang Z, Zhang H. Preparation and characterization of sulfonated poly(arylene ether ketone) copolymers with pendant sulfoalkyl groups as proton exchange membranes. J Power Sources. 2014;260:307. https://doi.org/10.1016/j.jpowsour.2014.03.023.

    Article  CAS  Google Scholar 

  8. Chen H, Wang S, Liu F, Wang D, Li J, Mao T, Liu G, Wang X, Xu J, Wang Z. Base-acid doped polybenzimidazole with high phosphoric acid retention for HT-PEMFC applications. J Membr Sci. 2020;596:117722. https://doi.org/10.1016/j.memsci.2019.117722.

    Article  CAS  Google Scholar 

  9. Li HQ, Liu XJ, Xu J, Xu D, Ni H, Wang S, Wang Z. Enhanced proton conductivity of sulfonated poly(arylene ether ketone sulfone) for fuel cells by grafting triazole groups onto polymer chains. J Membr Sci. 2016;509:173. https://doi.org/10.1016/j.memsci.2016.02.039.

    Article  CAS  Google Scholar 

  10. Yuan C, Wang Y. Synthesis and characterization of a novel sulfonated poly (aryl ether ketone sulfone) semi-crosslinked membrane with high proton selectivity through click reaction for direct methanol fuel cells. High Perform Polym. 2021;33(3):345. https://doi.org/10.1177/0954008320960216.

    Article  CAS  Google Scholar 

  11. Liu C, Wang X, Xu J, Wang C, Chen H, Liu W, Chen Z, Du X, Wang S, Wang Z. PEMs with high proton conductivity and excellent methanol resistance based on sulfonated poly (aryl ether ketone sulfone) containing comb-shaped structures for DMFCs applications. Int J Hydrog Energy. 2020;45(1):945. https://doi.org/10.1016/j.ijhydene.2019.10.166.

    Article  CAS  Google Scholar 

  12. Ma L, Xu J, Han S, Yang M, Wang Z, Ni H, Gui Y. Synthesis and characterization of sulfonated polymers containing triazoles as low-humidity proton exchange membranes. J Polym Res. 2014;21(8):551. https://doi.org/10.1007/s10965-014-0551-z.

    Article  CAS  Google Scholar 

  13. Pang J, Shen K, Feng S, Zhang H, Jiang Z. Polymer electrolyte membranes based on poly(arylene ether)s with flexible disulfophenyl pendant. J Power Sources. 2014;263:59. https://doi.org/10.1016/j.jpowsour.2014.03.100.

    Article  CAS  Google Scholar 

  14. Kim DJ, Lee HJ, Nam SY. Sulfonated poly(arylene ether sulfone) membranes blended with hydrophobic polymers for direct methanol fuel cell applications. Int J Hydrog Energy. 2014;39(30):17524. https://doi.org/10.1016/j.ijhydene.2013.09.030.

    Article  CAS  Google Scholar 

  15. Xing P, Robertson GP, Guiver MD, Mikhailenko SD, Wang K, Kaliaguine S. Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes. J Membr Sci. 2004;229(1):95. https://doi.org/10.1016/j.memsci.2003.09.019.

    Article  CAS  Google Scholar 

  16. Han H, Liu M, Xu L, Xu J, Wang S, Ni H, Wang Z. Construction of proton transport channels on the same polymer chains by covalent crosslinking. J Membr Sci. 2015;496:84. https://doi.org/10.1016/j.memsci.2015.08.047.

    Article  CAS  Google Scholar 

  17. Meng L, Zhang Z, Ju M, Xu J, Wang Z. Enhancing proton conductivity of proton exchange membranes via anchoring imidazole-loaded MIL-101-NH2 onto sulfonated poly (arylene ether ketone sulfone) by chemical bonding. Int J Energy Res. 2022;46(15):23480. https://doi.org/10.1002/er.8644.

    Article  CAS  Google Scholar 

  18. Zhang Z, Ren J, Xu J, Meng L, Zhao P, Wang H, Wang Z. Enhanced proton conductivity of sulfonated poly(arylene ether ketone sulfone) polymers by incorporating phosphotungstic acid-ionic-liquid-functionalized metal-organic framework. J Membr Sci. 2021;630:119304. https://doi.org/10.1016/j.memsci.2021.119304.

    Article  CAS  Google Scholar 

  19. Ju M, Meng L, Xu J, Chen X, Yu J, Wang Z. Achieving high proton conductivity for fuel cells based on chemically grafted poly(arylene ether ketone sulfone) and metal-organic frameworks. J Ind Eng Chem. 2023;123:342. https://doi.org/10.1016/j.jiec.2023.03.051.

    Article  CAS  Google Scholar 

  20. Ju M, Shi Q, Xu J, Chen X, Ren J, Lei J, Meng L, Zhao P, Wang Z. Construction of effective transmission channels by anchoring metal-organic framework on side-chain sulfonated poly(arylene ether ketone sulfone) for fuel cells. Int J Energy Res. 2022;46(8):11123. https://doi.org/10.1002/er.7914.

    Article  CAS  Google Scholar 

  21. Zhang Z, Ren J, Xu J, Meng L, Zhao P, Wang Z. Long-term durable solid state electrolyte membranes based on a metal-organic framework with phosphotungstic acid confined in the mesoporous cages. Int J Hydrog Energy. 2020;45(51):27527. https://doi.org/10.1016/j.ijhydene.2020.07.024.

    Article  CAS  Google Scholar 

  22. Xu J, Zhang Z, Yang K, He W, Yang X, Du X, Meng L, Zhao P, Wang Z. Construction of new transport channels by blending POM-based inorganic-organic complex into sulfonated poly(ether ketone sulfone) for proton exchange membrane fuel cells. J Membr Sci. 2020;596:117711. https://doi.org/10.1016/j.memsci.2019.117711.

    Article  CAS  Google Scholar 

  23. Zhang Z, Ren J, Xu J, Wang Z, He W, Wang S, Yang X, Du X, Meng L, Zhao P. Adjust the arrangement of imidazole on the metal-organic framework to obtain hybrid proton exchange membrane with long-term stable high proton conductivity. J Membr Sci. 2020;607:118194. https://doi.org/10.1016/j.memsci.2020.118194.

    Article  CAS  Google Scholar 

  24. Cheng D, Li K, Zang H, Chen J. Recent advances on polyoxometalate-based ion-conducting electrolytes for energy-related devices. Energy Environ Mater. 2023;6(2):e12341. https://doi.org/10.1002/eem2.12341.

    Article  CAS  Google Scholar 

  25. Liu J, Jiang N, Lin JM, Mei ZB, Dong LZ, Kuang Y, Liu JJ, Yao SJ, Li SL, Lan YQ. Structural evolution of giant polyoxometalate: from “Keplerate” to “Lantern” type Mo132 for improved oxidation catalysis. Angew Chem Int Ed. 2023;62(33):e202304728. https://doi.org/10.1002/anie.202304728.

    Article  CAS  Google Scholar 

  26. Zhang S, Lu Y, Sun X, Li Z, Dang T, Liu S. Proton transfer in polyamine-P2Mo5 model adducts: exploring the effect of polyamine cations on their proton conductivity. Dalton Trans. 2020;49(47):17301. https://doi.org/10.1039/D0DT03446K.

    Article  CAS  PubMed  Google Scholar 

  27. Wang JX, Liang S, Tan H, Wang YH, Zang HY, Li YG. Construction of strandberg-type polyoxometalate-based inorganic-organic hybrid material with water-assisted proton conductivity. ChemistrySelect. 2020;5(20):5883. https://doi.org/10.1002/slct.202000169.

    Article  CAS  Google Scholar 

  28. Lin J, Li N, Yang S, Jia M, Liu J, Li XM, An L, Tian Q, Dong LZ, Lan YQ. Self-assembly of giant Mo240 hollow opening dodecahedra. J Am Chem Soc. 2020;142(32):13982. https://doi.org/10.1021/jacs.0c06582.

    Article  CAS  PubMed  Google Scholar 

  29. Li J, Cao XL, Wang YY, Zhang SR, Du DY, Qin JS, Li SL, Su ZM, Lan YQ. The enhancement on proton conductivity of stable polyoxometalate-based coordination polymers by the synergistic effect of multiproton units. Chem Eur J. 2016;22(27):9299. https://doi.org/10.1002/chem.201601250.

    Article  CAS  PubMed  Google Scholar 

  30. Liu WJ, Dong LZ, Li RH, Chen YJ, Sun SN, Li SL, Lan YQ. Different protonic species affecting proton conductivity in hollow spherelike polyoxometalates. ACS Appl Mater Interfaces. 2019;11(7):7030. https://doi.org/10.1021/acsami.8b20509.

    Article  CAS  PubMed  Google Scholar 

  31. Liu B, Hu B, Du J, Cheng D, Zang HY, Ge X, Tan H, Wang Y, Duan X, Jin Z, Zhang W, Li Y, Su Z. Precise molecular-level modification of Nafion with bismuth oxide clusters for high-performance proton-exchange membranes. Angew Chem Int Ed. 2021;60(11):6076. https://doi.org/10.1002/anie.202012079.

    Article  CAS  Google Scholar 

  32. Liu JX, Zhang XB, Li YL, Huang SL, Yang GY. Polyoxometalate functionalized architectures. Coord Chem Rev. 2020;414:213260. https://doi.org/10.1016/j.ccr.2020.213260.

    Article  CAS  Google Scholar 

  33. Wu SX, Yang Y, Qin C, Hou YH, Wang XL, Su ZM. Organophosphate functionalized of Mo240 polyoxomolybdate dodecahedra. Tungsten. 2023;5(2):247. https://doi.org/10.1007/s42864-022-00190-1.

    Article  Google Scholar 

  34. Li S, Tan X, Yue M, Zhang L, Chai D, Wang W, Pan H, Fan L, Zhao C. A polyoxometalate-encapsulated nanocage cluster organic framework built from Cu4P2 units and its efficient bifunctional electrochemical performance. Chem Commun. 2020;56(96):15177. https://doi.org/10.1039/d0cc06665f.

    Article  CAS  Google Scholar 

  35. Feng L, Zeng TY, Hou HB, Zhou H, Tian J. Theoretical hydrogen bonding calculations and proton conduction for Eu(III)-based metal-organic framework. RSC Adv. 2021;11(19):11495. https://doi.org/10.1039/d1ra01528a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boskovic C. Rare earth polyoxometalates. Acc Chem Res. 2017;50(9):2205. https://doi.org/10.1021/acs.accounts.7b00197.

    Article  CAS  PubMed  Google Scholar 

  37. Hu JJ, Xie KL, Xiong TZ, Wang MM, Wen HR, Peng Y, Liu SJ. Stable europium(III) metal-organic framework demonstrating high proton conductivity and fluorescence detection of tetracyclines. Inorg Chem. 2023;62(30):12001. https://doi.org/10.1021/acs.inorgchem.3c01468.

    Article  CAS  PubMed  Google Scholar 

  38. Iwano T, Shitamatsu K, Ogiwara N, Okuno M, Kikukawa Y, Ikemoto S, Shirai S, Muratsugu S, Waddell PG, Errington RJ, Sadakane M, Uchida S. Ultrahigh proton conduction via extended hydrogen-bonding network in a preyssler-type polyoxometalate-based framework functionalized with a lanthanide ion. ACS Appl Mater Interfaces. 2021;13(16):19138. https://doi.org/10.1021/acsami.1c01752.

    Article  CAS  PubMed  Google Scholar 

  39. Yan TT, Xuan ZX, Wang S, Zhang X, Luo F. Facile one-pot construction of polyoxometalate-based lanthanide-amino acid coordination polymers for proton conduction. Inorg Chem Commun. 2019;105:147. https://doi.org/10.1016/j.inoche.2019.05.003.

    Article  CAS  Google Scholar 

  40. Zhang RT, Xiao HP, Li Z, Wang M, Xie YF, Ye YD, Li XX, Zheng ST. Two highly stable inorganic-organic hybrid 3D frameworks based on Cu-Ln incorporated polyoxometalates for selective dye removal and proton conduction. CrystEngComm. 2021;23(16):2973. https://doi.org/10.1039/d1ce00218j.

    Article  CAS  Google Scholar 

  41. Tang Q, Liu Y, Liu S, He D, Miao J, Wang X, Yang G, Shi Z, Zheng Z. High proton conduction at above 100 °C mediated by hydrogen bonding in a lanthanide metal-organic framework. J Am Chem Soc. 2014;136(35):12444. https://doi.org/10.1021/ja5069855.

    Article  CAS  PubMed  Google Scholar 

  42. Tandekar K, Singh C, Supriya S. Proton conductivity in {Mo72Fe30}-type keplerate. Eur J Inorg Chem. 2021;2021(8):734. https://doi.org/10.1002/ejic.202000889.

    Article  CAS  Google Scholar 

  43. Yin YZ, Zhang ZG, He WW, Xu JM, Jiang FY, Han X, Di WT, Wang Z, Ma S. Precise modification of poly(aryl ether ketone sulfone) proton exchange membranes with positively charged bismuth oxide clusters for high proton conduction performance. SusMat. 2022;2(1):76. https://doi.org/10.1002/sus2.41.

    Article  CAS  Google Scholar 

  44. He H, Zhu Y, Li T, Song S, Zhai L, Li X, Wu L, Li H. Supramolecular anchoring of polyoxometalate amphiphiles into Nafion nanophases for enhanced proton conduction. ACS Nano. 2022;16(11):19240. https://doi.org/10.1021/acsnano.2c08614.

    Article  CAS  PubMed  Google Scholar 

  45. Xu J, Zhang Z, Yang K, Zhang H, Wang Z. Synthesis and properties of novel cross-linked composite sulfonated poly (aryl ether ketone sulfone) containing multiple sulfonic side chains for high-performance proton exchange membranes. Renew Energ. 2019;138:1104. https://doi.org/10.1016/j.renene.2019.02.042.

    Article  CAS  Google Scholar 

  46. Li Z, Lv ZH, Yu H, Sun YQ, Li XX, Zheng ST. Giant Ln30-cluster-embedded polyoxotungstate nanoclusters with exceptional proton-conducting and luminescent properties. CCS Chem. 2022;4(9):2938.

    Article  CAS  Google Scholar 

  47. Lu Y, Yue C, Liu B, Zhang M, Li Y, Yang W, Lin Y, Pan Y, Sun D, Liu Y. The encapsulation of POM clusters into MIL-101(Cr) at molecular level: LaW10O36@MIL-101(Cr), an efficient catalyst for oxidative desulfurization. Microporous Mesoporous Mater. 2021;311:110694. https://doi.org/10.1016/j.micromeso.2020.110694.

    Article  CAS  Google Scholar 

  48. Xu J, Zhao S, Chen W, Wang M, Song YF. Highly efficient extraction and oxidative desulfurization system using Na7H2LaW10O36⋅32 H2O in [bmim]BF4 at room temperature. Chem Eur J. 2012;18(15):4775. https://doi.org/10.1002/chem.201102754.

    Article  CAS  PubMed  Google Scholar 

  49. Peacock RD, Weakley TJR. Heteropolytungstate complexes of the lanthanide elements Part I. Preparation and reactions. J Chem Soc A. 1971. https://doi.org/10.1039/j19710001836.

    Article  Google Scholar 

  50. Xu L, Xu J, Liu M, Han H, Ni H, Ma L, Wang Z. Fabrication of sulfonated poly(aryl ether ketone sulfone) membranes blended with phosphotungstic acid and microporous poly(vinylidene fluoride) as a depository for direct-methanol fuel cells. Int J Hydrog Energy. 2015;40(22):7182. https://doi.org/10.1016/j.ijhydene.2015.02.139.

    Article  CAS  Google Scholar 

  51. Iball J, Low JN, Weakley TJR. Heteropolytungstate complexes of the lanthanoid elements Part III. Crystal structure of sodium decatungstocerate(IV)-water (1/30). J Chem Soc Dalton Trans. 1974;18:2021. https://doi.org/10.1039/dt9740002021.

    Article  Google Scholar 

  52. AlDamen MA, Clemente-Juan JM, Coronado E, Martí-Gastaldo C, Gaita-Ariño A. Mononuclear lanthanide single-molecule magnets based on polyoxometalates. J Am Chem Soc. 2008;130(28):8874. https://doi.org/10.1021/ja801659m.

    Article  CAS  PubMed  Google Scholar 

  53. Chen Y, Zhao S, Song YF. An efficient heterogeneous catalyst based on highly dispersed Na7H2LaW10O36·32H2O nanoparticles on mesoporous silica for deep desulfurization. Appl Catal A-Gen. 2013;466:307. https://doi.org/10.1016/j.apcata.2013.06.030.

    Article  CAS  Google Scholar 

  54. Chen Y, Song YF. Immobilization of LaW10 onto ionic-liquid-modified mesoporous silica: deep desulfurization with zero-order reaction kinetics. ChemPlusChem. 2014;79(2):304. https://doi.org/10.1002/cplu.201300323.

    Article  CAS  PubMed  Google Scholar 

  55. Li J, Wang S, Xu J, Xu L, Liu F, Tian X, Wang Z. Organic-inorganic composite membrane based on sulfonated poly (arylene ether ketone sulfone) with excellent long-term stability for proton exchange membrane fuel cells. J Membr Sci. 2017;529:243. https://doi.org/10.1016/j.memsci.2017.02.001.

    Article  CAS  Google Scholar 

  56. Rana D, Kim HL, Kwag H, Choe S. Hybrid blends of similar ethylene 1-octene copolymers. Polymer. 2000;41(19):7067. https://doi.org/10.1016/S0032-3861(00)00066-5.

    Article  CAS  Google Scholar 

  57. Rana D, Kim HL, Kwag H, Rhee J, Cho K, Woo T, Lee BH, Choe S. Blends of ethylene 1-octene copolymer synthesized by ziegler–natta and metallocene catalysts II. Rheology and morphological behaviors. J Appl Polym Sci. 2000;76(13):1950. https://doi.org/10.1002/(SICI)1097-4628(20000624)76%3A13%3C1950%3A%3AAID-APP13%3C3.0.CO%3B2-8

    Article  CAS  Google Scholar 

  58. Rana D, Cho K, Woo T, Lee BH, Choe S. Blends of ethylene 1-octene copolymer synthesized by ziegler–natta and metallocene catalysts I. Thermal and mechanical properties. J Appl Polym Sci. 1999;74(5):1169. https://doi.org/10.1002/(SICI)1097-4628(19991031)74%3A5%3C1169%3A%3AAID-APP13%3E3.0.CO%3B2-W

    Article  CAS  Google Scholar 

  59. Rana D, Lee CH, Cho K, Lee BH, Choe S. Thermal and mechanical properties for binary blends of metallocene polyethylene with conventional polyolefins. J Appl Polym Sci. 1998;69(12):2441

    Article  CAS  Google Scholar 

  60. Divya K, Sri Abirami Saraswathi MS, Nagendran A, Rana D. Sulfonated chitosan and hkust-1 metal organic frameworks based hybrid membranes for direct methanol fuel cell applications. J Appl Polym Sci. 2022;139(36):e52829. https://doi.org/10.1002/app.52829.

    Article  CAS  Google Scholar 

  61. Rana D, Bag K, Bhattacharyya SN, Mandal BM. Miscibility of poly(styrene-co-butyl acrylate) with poly(ethyl methacrylate): Existence of both ucst and lcst. J Polym Sci B Polym Phys. 2000;38(3):369. https://doi.org/10.1002/(SICI)1099-0488(20000201)38:33.0.CO;2-W.

    Article  CAS  Google Scholar 

  62. Rana D, Mandal BM, Bhattacharyya SN. Analogue calorimetric studies of blends of poly(vinyl ester)s and polyacrylates. Macromolecules. 1996;29(5):1579. https://doi.org/10.1021/ma950954n.

    Article  CAS  Google Scholar 

  63. Rana D, Mandal BM, Bhattacharyya SN. Analogue calorimetry of polymer blends: Poly(styrene-co-acrylonitrile) and poly(phenyl acrylate) or poly(vinyl benzoate). Polymer. 1996;37(12):2439. https://doi.org/10.1016/0032-3861(96)85356-0.

    Article  CAS  Google Scholar 

  64. Rana D, Mandal BM, Bhattacharyya SN. Miscibility and phase diagrams of poly(phenyl acrylate) and poly(styrene-co-acrylonitrile) blends. Polymer. 1993;34(7):1454. https://doi.org/10.1016/0032-3861(93)90861-4.

    Article  CAS  Google Scholar 

  65. Wei ML, Zhuang PF, Li HH, Yang YH. Crystal structures and conductivities of two organic-inorganic hybrid complexes based on poly-keggin-anion chains. Eur J Inorg Chem. 2011;2011(9):1473. https://doi.org/10.1002/ejic.20100114.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22271022), the Natural Science Foundation of Jilin Province (No. YDZJ202201ZYTS342). This paper was also supported by the China Scholarship Council (CSC No. 201802335014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Wen He, Jing-Mei Xu or Ya-Qian Lan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 968 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, ML., Han, X., He, WW. et al. Sulfonated poly (aryl ether ketone sulfone) modified by polyoxometalates LaW10 clusters for proton exchange membranes with high proton conduction performance. Tungsten 6, 454–464 (2024). https://doi.org/10.1007/s42864-024-00266-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-024-00266-0

Keywords

Navigation