Skip to main content

Advertisement

Log in

Single crystal growth and electrochemical studies of garnet-type fast Li-ion conductors

  • Perspective
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

All-solid-state batteries have attracted much attention due to their improved safety and higher energy density as compared to the conventional batteries. Owing to the excellent chemical stability against lithium metal and relatively high ionic conductivity at room-temperature, garnet-type fast lithium ion conductors with three-dimensional lithium ion transport channels are promising solid electrolytes for all-solid-state batteries. In order to better understand the intrinsic lithium-ion transport mechanisms and prevent lithium dendrite formation, it is desired to investigate single-crystal solid electrolytes. In this perspective, we review several methods reported to grow single crystals of garnet-type electrolytes. Pros and cons of different growth methods are discussed. Furthermore, we introduce some case studies on electrochemical properties of garnet-type single crystals. In addition, we provide some perspectives about potential research directions of single-crystal solid electrolytes for all-solid-state batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Khomenko V, Raymundo-Piñero E, Béguin F. High-energy density graphite/AC capacitor in organic electrolyte. J Power Sources. 2008;177(2):643.

    Article  CAS  Google Scholar 

  2. Xu K. Electrolytes and interphases in Li-Ion batteries and beyond. Chem Rev. 2014;114(23):11503.

    Article  CAS  Google Scholar 

  3. Hyooma H, Hayashi K. Crystal structures of La3Li5M2O12 (M=Nb, Ta). Mater Res Bull. 1988;23(10):1399.

    Article  CAS  Google Scholar 

  4. Mazza D. Remarks on a ternary phase in the La2O3Me2O5Li2O system (Me=Nb, Ta). Mater Lett. 1988;7(5):205.

    Article  CAS  Google Scholar 

  5. Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed. 2007;46(41):7778.

    Article  CAS  Google Scholar 

  6. Cao SY, Song SB, Xiang X, Hu QH, Zhang CF, Xia ZJ, Xu Y, Zha WP, Li JY, Gonzale PM, Han YH, Chen F. Modeling, preparation, and elemental doping of Li7La3Zr2O12 garnet-type solid electrolytes: A review. J Korean Ceram Soc. 2019;56(2):111.

    Article  CAS  Google Scholar 

  7. Song S, Sheptyakov D, Korsunsky AM, Duong HM, Lu L. High Li ion conductivity in a garnet-type solid electrolyte via unusual site occupation of the doping Ca ions. Mater Des. 2016;93:232.

    Article  CAS  Google Scholar 

  8. Kataoka K, Nagata H, Akimoto J. Lithium-ion conducting oxide single crystal as solid electrolyte for advanced lithium battery application. Sci Rep. 2018;8(1):9965.

    Article  Google Scholar 

  9. Cheng EJ, Sharafi A, Sakamoto J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim Acta. 2017;223:85.

    Article  CAS  Google Scholar 

  10. Qin Z, Meng X, Xie Y, Qian D, Deng H, Mao D, Wan L, Huang YX. Fast Li-ion transport pathways via 3D continuous networks in homogeneous garnet-type electrolyte for solid-state lithium batteries. Energy Storage Mater. 2021;43:190.

    Article  Google Scholar 

  11. Dorai A, Kuwata N, Takekawa R, Kawamura J, Kataoka K, Akimoto J. Diffusion coefficient of lithium ions in garnet-type Li6.5La3Zr1.5Ta0.5O12 single crystal probed by 7Li pulsed field gradient-NMR spectroscopy. Solid State Ion. 2018;327:18.

    Article  CAS  Google Scholar 

  12. Swamy T, Park R, Sheldon BW, Rettenwander D, Porz L, Berendts S, Uecker R, Carter WC, Chiang YM. Lithium metal penetration induced by electrodeposition through solid electrolytes: example in single-crystal Li6La3ZrTaO12 garnet. J Electrochem Soc. 2018;165(16):A3648.

    Article  CAS  Google Scholar 

  13. Kataoka K, Akimoto J. High ionic conductor member of garnet-type oxide Li6.5La3Zr1.5Ta0.5O12. ChemElectroChem. 2018;5(18):2551.

    Article  CAS  Google Scholar 

  14. Porz L, Swamy T, Sheldon BW, Rettenwander D, Frömling T, Thaman HL, Berendts S, Uecker R, Carter WC, Chiang YM. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv Energy Mater. 2017;7(20):1701003.

    Article  Google Scholar 

  15. Pietsch P, Wood V. X-ray tomography for lithium ion battery research: a practical guide. Annu Rev Mater Res. 2017;47:451.

    Article  CAS  Google Scholar 

  16. Redhammer GJ, Meven M, Ganschow S, Tippelt G, Rettenwander D. Single-crystal neutron and X-ray diffraction study of garnet-type solid-state electrolyte Li6La3ZrTaO12: an in situ temperature-dependence investigation (2.5 ≤ T ≤ 873 K). Acta Crystallogr Sect B Struct Sci Cryst Eng Mater. 2021;77(1):123.

    Article  CAS  Google Scholar 

  17. Awaka J, Kijima N, Hayakawa H, Akimoto J. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. J Solid State Chem. 2009;182(8):2046.

    Article  CAS  Google Scholar 

  18. Kataoka K, Akimoto J. Lithium-ion conductivity and crystal structure of garnet-type solid electrolyte Li7-xLa3Zr2-xTaxO12 using single-crystal. J Ceram Soc Jpn. 2019;127(8):521.

    Article  CAS  Google Scholar 

  19. Xiao X, Wagata H, Hayashi F, Onodera H, Yubuta K, Zettsu N, Oishi S, Teshima K. Unique growth manner of Li5La3Ta2O12 crystals from lithium hydroxide flux at low temperature. Cryst Growth Des. 2015;15(10):4863.

    Article  CAS  Google Scholar 

  20. Schmehr JL, Wilson SD. Active crystal growth techniques for quantum materials. Annu Rev Mater Res. 2017;47(1):153.

    Article  CAS  Google Scholar 

  21. Paglione J, Butch NP, Rodriguez EE. Fundamentals of quantum materials: a practical guide to synthesis and exploration. New Jersey: World Scientific; 2021;83.

    Book  Google Scholar 

  22. Matsuda Y, Itami Y, Hayamizu K, Ishigaki T, Matsui M, Takeda Y, Yamamotoa O, Imanishia N. Phase relation, structure and ionic conductivity of Li7−x−3yAlyLa3Zr2−xTaxO12. RSC Adv. 2016;6(81):78210.

    Article  CAS  Google Scholar 

  23. Wagner R, Redhammer GJ, Rettenwander D, Senyshyn A, Schmidt W, Wilkening M, Amthauer G. Crystal structure of garnet-related Li-ion conductor Li7–3xGaxLa3Zr2O12: fast Li-ion conduction caused by a different cubic modification? Chem Mater. 2016;28(6):1861.

    Article  CAS  Google Scholar 

  24. Hayamizu K, Terada Y, Kataoka K, Akimoto J. Toward understanding the anomalous Li diffusion in inorganic solid electrolytes by studying a single-crystal garnet of LLZO–Ta by pulsed-gradient spin-echo nuclear magnetic resonance spectroscopy. J Chem Phys. 2019;150(19):194502.

    Article  Google Scholar 

  25. Stanje B, Rettenwander D, Breuer S, Uitz M, Berendts S, Lerch M, Uecker R, Redhammer G, Hanzu I, Wilkening M. Solid electrolytes: extremely fast charge carriers in garnet-type Li6La3ZrTaO12 single crystals. Ann Phys. 2017;529(12):1700140.

    Article  Google Scholar 

  26. Monroe C, Newman J. The effect of interfacial deformation on electrodeposition kinetics. J Electrochem Soc. 2004;151(6):A880.

    Article  CAS  Google Scholar 

  27. Wang C, Fu K, Kammampata SP, McOwen DW, Samson AJ, Zhang L, Hitz GT, Nolan AM, Wachsman ED, Mo YF, Thangadurai V, Hu LB. Garnet-type solid-state electrolytes: Materials, interfaces, and batteries. Chem Rev. 2020;120(10):4257.

    Article  CAS  Google Scholar 

  28. Hongahally Basappa R, Ito T, Morimura T, Bekarevich R, Mitsuishi K, Yamada H. Grain boundary modification to suppress lithium penetration through garnet-type solid electrolyte. J Power Sources. 2017;363:145.

    Article  CAS  Google Scholar 

  29. Li YT, Chen X, Dolocan A, Cui ZM, Xin S, Xue LG, Xu HH, Park K, Goodenough JB. Garnet electrolyte with an ultralow interfacial resistance for Li-Metal batteries. J Am Chem Soc. 2018;140(20):6448.

    Article  CAS  Google Scholar 

  30. Dai J, Yang C, Wang C, Pastel G, Hu L. Interface engineering for garnet-based solid-state lithium-metal batteries: Materials, structures, and characterization. Adv Mater. 2018;30(48):1802068.

    Article  Google Scholar 

  31. Wang AN, Nonemacher JF, Yan G, Finsterbusch M, Malzbender J, Krüger M. Mechanical properties of the solid electrolyte Al-substituted Li7La3Zr2O12 (LLZO) by utilizing micro-pillar indentation splitting test. J Eur Ceram Soc. 2018;38(9):3201.

    Article  CAS  Google Scholar 

  32. Cheng Z, Zahiri B, Ji X, Chen C, Chalise D, Braun PV, Cahill DG. Good solid-state electrolytes have low, glass-like thermal conductivity. Small. 2021;17(28):2101693.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the start-up funds from the University of California, Riverside. The authors thank Dr. Yutao Li from the University of Texas at Austin for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YT., Chen, X. Single crystal growth and electrochemical studies of garnet-type fast Li-ion conductors. Tungsten 4, 263–268 (2022). https://doi.org/10.1007/s42864-022-00176-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-022-00176-z

Keywords

Navigation