Abstract
Type-II topological Dirac semimetals are topological quantum materials hosting Lorentz-symmetry breaking type-II Dirac fermions, which are tilted Dirac cones with various exotic physical properties, such as anisotropic chiral anomalies and novel quantum oscillations. Until now, only limited material systems have been confirmed by theory and experiments with the type-II Dirac fermions. Here, we investigated the electronic structure of a new type-II Dirac semimetal VAl3 with angle-resolved photoelectron spectroscopy. The measured band dispersions are consistent with the theoretical prediction, which suggests the Dirac points are located close to (at about 100 meV above) the Fermi level. Our work demonstrates a new type-II Dirac semimetal candidate system with different Dirac node configurations and application potentials.
Similar content being viewed by others
Change history
14 August 2023
A Correction to this paper has been published: https://doi.org/10.1007/s42864-023-00238-w
References
Zhang H, Liu CX, Qi XL, Dai X, Fang Z, Zhang SC. Topological insulators in Bi2Se3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys. 2009;5(6):438.
Qi XL, Zhang SC. Topological insulators and superconductors. Rev Mod Phys. 2011;83(4):1057.
Chen YL, Analytis JG, Chu JH, Liu ZK, Mo SK, Qi XL, Zhang HJ, Lu DH, Dai X, Fang Z, Zhang SC, Fisher IR, Hussain Z, Shen ZX. Experimental realization of a three-dimensional topological insulators, Bi2Te3. Science. 2009;325(5937):178.
Fu L, Kane CL. Topological insulators with inversion symmetry. Phys Rev B. 2007;76(4):045302.
Moore JE, Balent L. Topological invariants of time-reversal-invariant band structures. Phys Rev B. 2007;75(12):121306.
Hsieh D, Qian D, Wray L, Xia Y, Hor YS, Cava RJ, Hasan MZ. A topological Dirac insulator in a quantum spin Hall phase. Nature. 2008;452(970):06843.
Liu ZK, Zhou B, Zhang Y, Wang ZJ, Weng HM, Prabhakaran D, Mo SK, Shen ZX, Fang Z, Dai X, Hussain Z, Chen YL. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science. 2014;343(6173):864.
Wang Z, Weng H, Wu Q, Dai X, Fang Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys Rev B. 2013;88(12):125427.
Jeon S, Zhou BB, Gyenis A, Feldman BE, Kimchi I, Potter AC, Gibson QD, Cava RJ, Vishwanath A, Yazdani A. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2. Nat Mater. 2014;13(9):851.
Neupane M, Xu SY, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang TR, Jeng HT, Lin H, Bansil A, Chou FH, Hasan MZ. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat Commun. 2014;5(1):3786.
Weng H, Fang C, Fang Z, Bernevig BA, Dai X. Weyl Semimetal Phase in non-centrosymmetric transition-metal monophosphides. Phys Rev X. 2015;5(1):011029.
Lv BQ, Weng HM, Fu BB, Wang XP, Miao H, Ma J, Richard P, Huang XC, Zhao LX, Chen GF, Fang Z, Dai X, Qian T, Ding H. Experimental discovery of Weyl Semimetal TaAs3. Phys Rev X. 2015;5(3):031013.
Xu SY, Belopolski I, Sanchez DS, Zhang Z, Chang G, Guo C, Bian G, Yuan Z, Lu H, Chang TR, Shibayev PP, Prokopovych ML, Alidoust N, Zheng H, Lee CC, Huang SM, Sankar R, Chou F, Hsu CH, Jeng HT, Bansil A, Neupert T, Strocov VN, Lin H, Jia S, Hasan MZ. Experimental discovery of Weyl Semimetal TaP. Sci Adv. 2015;1(10):1501092.
Yang LX, Liu ZK, Sun Y, Peng H, Yang HF, Zhang T, Zhou B, Zhang Y, Guo YF, Rahn M, Prabhakaran D, Hussain Z, Mo ZK, Felser Z, Yan B, Chen YL. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat Phys. 2015;11(9):728.
Xu SY, Alidoust N, Belopolski I, Yuan Z, Bian G, Chang TR, Zheng H, Strocov VN, Sanchez DS, Chang G, Zhang C, Mou D, Wu Y, Huang L, Lee CC, Huang SM, Wang BK, Bansil A, Jeng HT, Neupert T, Kaminski A, Lin H, Jia S, Hasan MZ. Discovery of a Weyl fermion state with fermi arcs in niobium arsenide. Nat Phys. 2015;11(9):748.
Laha A, Mardanya S, Singh B, Lin H, Bansil A, Agarwal A, Hossain Z. Magnetotransport properties of the topological nodal-line semimetal CaCdSn. Phys Rev B. 2020;102(3):035164.
Fang C, Chen Y, Kee HK, Fu L. Topological nodal line semimetals with and without spin-orbital coupling. Phys Rev B. 2015;92(8):081201.
Zhou Y, Xiong F, Wan X, An J. Hopf-link topological nodal-loop semimetals. Phys Rev B. 2018;97(15):155140.
Soluyanov AA, Gresch D, Wang Z, Wu QS, Troyer M, Dai X, Bernevig BA. Type-II Weyl semimetals. Nature. 2015;527(7579):495.
Xu Y, Zhang F, Zhang C. Structured Weyl points in spin-orbit coupled fermionic superfluids. Phys Rev Lett. 2015;115(26):265304.
Udagawa M, Bergholtz EJ. Field-Selective anomaly and chiral mode reversal in Type-II Weyl materials. Phys Rev Lett. 2016;117(8):086401.
Lv YY, Li X, Zhang BB, Deng WY, Yao SH, Chen YB, Zhou J, Zhang ST, Lu MH, Zhang L, Tian ML, Sheng L, Chen YF. Experimental observation of anisotropic adler-bell-jackiw anomaly in type-II weyl semimetal WTe1.98 crystals at the quasiclassical regime. Phys Rev Lett. 2017;118(9):096603.
Ali MN, Xiong J, Flynn S, Tao J, Gibson QD, Schoop LM, Liang T, Haldolaarachchige T, Hirschberger M, Ong NP, Cava RT. Large, non-saturating magnetoresistance in WTe2. Nature. 2014;514(7521):205.
O’Brien TE, Diez M, Beenakker CWJ. Magnetic breakdown and Klein tunneling in a Type-II Weyl semimetal. Phys Rev Lett. 2016;16(23):236401.
Jiang J, Liu ZK, Sun Y, Yang HF, Rajamathi CR, Qi YP, Yang LX, Chen C, Peng H, Hwang CC, Sun SZ, Mo SK, Vobornik I, Fujii J, Parkin SSP, Felser C, Yan BH, Chen YL. Signature of type-II Weyl semimetal phase in MoTe2. Nat Commun. 2017;8(1):13973.
Deng K, Wan GL, Deng P, Zhang KN, Ding SJ, Wang RY, Yan MZ, Huang H, Zhang H, Xu Z, Denlinger J, Fedorov A, Yang H, Duan W, Yao H, Wu Y, Fan S, Zhang H, Chen X, Zhou S. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat Phys. 2016;12(12):1105.
Tamai A, Wu QS, Cucchi I, Bruno FY, Riccò S, Kim TY, Hoesch M, Barreteau C, Giannini E, Besnard C, Soluyanov AA, Baumberger F. Fermi Arcs and their topological character in the candidate Type-II Weyl semimetal MoTe2. Phys Rev X. 2016;6(3):031021.
Bruno FY, Tamai A, Wu QS, Cucchi I, Barreteau C, de la Torre A, McKeown Walker S, Riccò S, Wang Z, Kim TK, Hoesch M, Shi M, Plumb NC, Giannini E, Soluyanov AA, Baumberger F. Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WTe2. Phys Rev B. 2016;94(12):121112(R).
Wang CL, Zhang Y, Huang JW, Nie S, Liu GD, Liang AJ, Zhang YX, Shen B, Liu J, Hu C, Ding Y, Liu DF, Hu Y, He SL, Zhao L, Yu L, Hu J, Wei J, Mao ZQ, Shi YG, Jia XW, Zhang FF, Zhang SJ, Yang F, Wang ZM, Peng QJ, Weng HM, Dai X, Fang Z, Xu ZY, Chen CT, Zhou XJ. Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal WTe2. Phys Rev B. 2016;94(24):241119(R).
Wu Y, Jo NH, Mou D, Huang L, Bud’ko SL, Canfield PC, Kaminski A. Observation of Fermi arcs in the type-II Weyl semimetal WTe2. Phys Rev B. 2016;94(12):121113.
Autes G, Gresch D, Troyer M, Soluyanov AA, Yazyev OV. Robust Type-II Weyl semimetal phase in transition metal diphosphides XP2 (X=Mo, W). Phys Rev Lett. 2016;117(6):066402.
Kumar N, Sun Y, Xu N, Manna K, Yao M, Suss V, Leermakers I, Young O, Forster T, Schmidt M, Borrmann MH, Yan B, Zeitler U, Shi M, Felser C, Shekhar C. Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP2 and MoP2. Nat Commun. 2017;8(1):1642.
Yao MY, Xu N, Wu QS, Autès G, Kumar N, Strocov VN, Plumb NC, Radovic M, Yazyev OV, Felser C, Mesot J, Shi M. Observation of Weyl nodes in Robust Type-II Weyl semimetal WP2. Phys Rev Lett. 2019;122(17):176402.
Xu SY, Lidoust N, Chang GQ, Lu H, Singh B, Belopolski I, Sanchez D, Zhang X, Bian G, Zheng H, Husanu MA, Bian Y, Huang SM, Hsu CH, Chang TR, Jeng HT, Bansil A, Strocov VN, Lin H, Jia S, Hasan MZ, Neupert T. Discovery of Lorentz-violating type II Weyl fermions in LaAlGe. Sci Adv. 2017;3(6):1603266.
Chang G, Xu SY, Sanchez DS, Huang SM, Lee CC, Chang TR, Bian G, Zheng H, Belopolski I, Alidoust N, Jeng HT, Bansil A, Lin H, Hasan MZ. A strong robust type II Weyl fermion semimetal state in Ta3S2. Sci Adv. 2016;2(6):1600295.
Koepernik K, Kasinathan D, Efremov DV, Khim S, Borisenko S, Bchner B, Brink JVD. TaIrTe4: A ternary type-II Weyl semimetal. Phys Rev B. 2016;93(20):201101.
Borisenko S, Evtushinsky D, Gibson Q, Yaresko A, Koepernik K, Kim T, Ali M, van den Brink J, Hoesch M, Fedorov A, Haubold E, Kushnirenko Y, Soldatov I, Schafer R, Cava RJ. Time-reversal symmetry breaking type-II Weyl state in YbMnBi2. Nat Commun. 2019;10(1):3424.
Xu CQ, Li B, Jiao WH, Zhou W, Qian B, Sankar R, Zhigadlo ND, Qi YP, Qian D, Chou FC, Xu XF. Topological type-II Dirac fermions approaching the fermi level in a transition metal dichalcogeenide NiTe2. Chem Mater. 2018;30(14):4823.
Huang H, Zhou S, Duan W. Type-II Dirac fermions in the PtSe2 class of transition metal dichalcogenides. Phys Rev B. 2016;94(12):121117(R).
Zhang K, Yan M, Zhang H, Huang H, Arita M, Sun Z, Duan W, Wu Y, Zhou S. Experimental evidence for type-II Weyl semimetal in PtSe2. Phys Rev B. 2017;96(12):125102.
Li Y, Xia Y, Ekahana SA, Kumar N, Jiang J, Yang L, Chen C, Liu C, Yan B, Felser C, Li G, Liu Z, Chen Y. Topological origin of the type-II Dirac fermions in PtSe2. Phys Rev Mater. 2017;1(7):074202.
Yan M, Huang H, Zhang K, Wang E, Yao W, Deng K, Wan G, Zhang H, Arita M, Yang H. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2. Nat Commun. 2017;8(1):257.
Noh HJ, Jeong J, Cho EJ, Kim K, Min BI, Park BG. Experimental realization of type-II Dirac fermions in a PtTe2 superconductor. Phys Rev Lett. 2017;119(1):016401.
Fei F, Bo X, Wang R, Wu B, Jiang J, Fu D, Gao M, Zheng H, Chen Y, Wang X, Bu H, Song F, Wan X, Wang B, Wang G. Nontrivial berry phase and type-II Dirac transport in the layered material. Phys Rev B. 2017;96(4):041201(R).
Deng T, Chen C, Su H, He JY, Liang AJ, Cui ST, Yang HF, Wang CW, Huang K, Jozwiak C, Bostwick A, Rotenberg E, Lu DH, Hashimoto M, Yang LX, Liu ZK, Guo YF, Xu G, Liu Z, Chen YL. Electronic structure of the Si-containing topological Dirac semimetal CaAl2Si2. Phys Rev B. 2020;102(4):045106.
Chang TR, Xu SY, Sanchez SD, Tsai WF, Huang SF, Chang G, Hsu CH, Bian G, Belopolski I, Yu ZM, Yang SA, Neupert T, Jeng HJ, Lin H, Hasan MZ. Type-II symmetry-protected topological Dirac semimetal. Phys Rev Lett. 2017;119(2):026404.
Chen KW, Lian X, Lai Y, Aryal N, Chiu YC, Lan W, Graf D, Manousakis E, Baumbach RE, Balicas L. Bulk fermi surfaces of the Dirac Type-II Semimetallic candidates MAl3 (where M=V, Nb, and Ta). Phys Rev Lett. 2018;120(20):206401.
Creveling J Jr, Luo HL. Temperature-dependence in the susceptibility of Al3V. Phys Lett A. 1969;28(11):772.
Krajcí M, Hafner J. Covalent bonding and bandgap formation in transition-metal aluminides: di-aluminides of group VIII transition metals. Phys Condens Matter. 2002;14(23):1865.
Kumagai M, Kurosaki K, Ohishi YJ, Muta H, Yamanaka S. Reduction of lattice thermal conductivity of pseudogap intermetallic compound Al3V. Phys Status Solidi B. 2016;253(3):469.
Singha R, Roy S, Pariari A, Satpati B, Mandal P. Planar hall effect in the type-II Dirac semimetal VAl3. Phys Rev B. 2018;98(8):081103(R).
Canfield PC, Fisk Z. Growth of single crystals from metallic fluxes. Philos Mag. 1992;65(6):1117.
Acknowledgements
This research used resources of the Diamond Light Source, and other two Angle-resolved photoemission spectroscopy beamlines: Advanced Light Source, a United States Department of Energy Office of Science User Facility under Contract No. DE-AC02-05CH11231 and ‘Dreamline’ beamline of the Shanghai Synchrotron Radiation Facility. This work was sponsored by the National Key R&D Program of China (Grant No. 2017YFA0305400), the National Natural Science Foundation of China (Grant No. 11674229), Shanghai Municipal Science and Technology Major Project (Grant No. 2018SHZDZX02).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors state that there is no conflict of interest to disclose.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The original online version of this article was revised: In this article Sheng-Tao Cui and Yu-Lin Chen should also have been denoted as one of the corresponding authors. This article has three corresponding authors: Zhong-Kai Liu, Sheng-Tao Cui, and Yu-Lin Chen.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Fang, HW., Liang, AJ., Schröter, N.B.M. et al. Measurement of the electronic structure of a type-II topological Dirac semimetal candidate VAl3 using angle-resolved photoelectron spectroscopy. Tungsten 5, 332–338 (2023). https://doi.org/10.1007/s42864-022-00141-w
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42864-022-00141-w