Skip to main content
Log in

Anisotropic transport in a possible quasi-one-dimensional topological candidate: TaNi2Te3

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 14 August 2023

This article has been updated

Abstract

We report on the solid-state synthesis and the strongly anisotropic transport properties of the ternary telluride TaNi2Te3, whose three orthogonal resistivity coefficients exhibit a large ratio of 1.4:1:2294 (14:1:2303) at 300 K (2 K), thereby demonstrating its quasi-one-dimensional (q1D) electronic structure. The Kohler’s rule in different current/field configurations shows a moderate violation. Its one dimensionality manifests itself in the needle-like shape of crystal, the large anisotropic resistivity and the flat Fermi surface normal to the chain direction. Moreover, the first-principles calculations also provide evidence for the existence of the nontrivial topological carriers in this q1D system. Our calculation demonstrates that TaNi2Te3 is a strong topological nontrivial material with topological indices (1; 1 0 1) and its nontrivial topology is also evidenced from its bulk-surface correspondence. Our study may therefore offer a new platform for engineering the topologically nontrivial phase in low-dimensional materials, in analogy to the recently discovered q1D topological TaNiTe5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Hasan MZ, Kane CL. Colloquium: topological insulators. Rev Mod Phys. 2010;82:3045.

    Article  CAS  Google Scholar 

  2. Qi XL, Zhang SC. Topological insulators and superconductors. Rev Mod Phys. 2011;83:1057.

    Article  CAS  Google Scholar 

  3. Burkov AA. Topological semimetals. Nat Mater. 2016;15:1145.

    Article  CAS  Google Scholar 

  4. Pan Y, Fan FR, Hong X, He B, Le C, Schnelle W, He Y, Imasato K, Borrmann H, Hess C, Buchner B, Sun Y, Fu C, Snyder GJ, Felser C. Thermoelectric properties of novel semimetals: a case study of YbMnSb2. Adv Mater. 2021;33:2003168.

    Article  CAS  Google Scholar 

  5. Fu CG, Sun Y, Felser C. Topological thermoelectrics. APL Mater. 2020;8:040913.

    Article  CAS  Google Scholar 

  6. Soluyanov AA, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig BA. Type-II Weyl semimetals. Nature. 2015;527:495.

    Article  CAS  Google Scholar 

  7. Bradlyn B, Cano J, Wang Z, Vergniory MG, Felser C, Cava RJ, Bernevig BA. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science. 2016;353:558.

    Article  CAS  Google Scholar 

  8. Tang P, Zhou Q, Zhang SC. Multiple types of topological fermions in transition metal silicides. Phys Rev Lett. 2017;119:206402.

    Article  Google Scholar 

  9. Lv BQ, Feng ZL, Xu QN, Gao X, Ma JZ, Kong LY, Richard P, Huang YB, Strocov VN, Fang C, Weng HM, Shi YG, Qian T, Ding H. Observation of three-component fermions in the topological semimetal molybdenum phosphide. Nature. 2017;546:627.

    Article  CAS  Google Scholar 

  10. Langbehn J, Peng Y, Trifunovic L, von Oppen F, Brouwer PW. Reflection-symmetric second-order topological insulators and superconductors. Phys Rev Lett. 2017;119:246401.

    Article  Google Scholar 

  11. Yue C, Xu Y, Song Z, Weng HM, Lu YM, Fang C, Dai X. Symmetry-enforced chiral hinge states and surface quantum anomalous Hall effect in the magnetic axion insulator Bi2−xSmxSe3. Nat Phys. 2019;15:577.

    Article  CAS  Google Scholar 

  12. Wang ZJ, Wieder BJ, Li J, Yan BH, Bernevig BA. Higher-order topology, monopole nodal lines, and the origin of large fermi arcs in transition metal dichalcogenides XTe2 (X = Mo; W). Phys Rev Lett. 2019;123:186401.

    Article  CAS  Google Scholar 

  13. Chen C, Song Z, Zhao J, Chen Z, Yu Z, Sheng X, Yang Shengyuan A. Universal approach to magnetic second-order topological insulator. Phys Rev Lett. 2020;125:056402.

    Article  CAS  Google Scholar 

  14. Liu XL, Wang HY, Su H, Yu ZH, Guo YF. Nontrivial topological states in the tantalum dipnictides TaX2 (X = As, P). Tungsten. 2020;2:251.

    Article  Google Scholar 

  15. Autes G, Isaeva A, Moreschini L, Johannsen JC, Pisoni A, Mori R, Zhang W, Filatova TG, Kuznetsov AN, Forro L, Broek WV, Kim Y, Kim KS, Lanzara A, Denlinger JD, Rotenberg E, Bostwick A, Grioni M, Yazyev OV. A novel quasi-one-dimensional topological insulator in bismuth iodide β -Bi4I4. Nat Mater. 2016;15:154.

    Article  CAS  Google Scholar 

  16. Noguchi R, Takahashi T, Kuroda K, Ochi M, Shirasawa T, Sakano M, Bareille C, Nakayama M, Watson MD, Yaji K, Harasawa A, Iwasawa H, Dudin P, Kim TK, Hoesch M, Kandyba V, Giampietri A, Barinov A, Shin S, Arita R, Sasagawa T, Kondo T. A weak topological insulator state in quasi-one-dimensional bismuth iodide. Nature. 2019;566:518.

    Article  CAS  Google Scholar 

  17. Gooth J, Bradlyn B, Honnali S, Schindler C, Kumar N, Noky J, Qi Y, Shekhar C, Sun Y, Wang Z, Bernevig BA, Felser C. Axionic charge-density wave in theWeyl semimetal (TaSe4)2I. Nature. 2019;575:315.

    Article  CAS  Google Scholar 

  18. Haubold E, Koepernik K, Efremov D, Khim S, Fedorov A, Kushnirenko Y, Brink J, Wurmehl S, Buchner B, Kim TK, Hoesch M, Sumida K, Taguchi K, Yoshikawa T, Kimura A, Okuda T, Borisenko SV. Experimental realization of type-II Weyl state in noncentrosymmetric TaIrTe4. Phys Rev B. 2017;95:241108(R).

    Article  Google Scholar 

  19. Zhou W, Li B, Xu CQ, van Delft MR, Chen YG, Fan XC, Qian B, Hussey NE, Xu XF. Nonsaturating magnetoresistance and nontrivial band topology of type-II Weyl semimetal NbIrTe4. Adv Electron Mater. 2019;5:1900250.

    Article  Google Scholar 

  20. Song Z, Li B, Xu C, Wu S, Qian B, Chen T, Biswas PK, Xu X, Sun J. Pressure engineering of the Dirac fermions in quasi-one-dimensional Tl2Mo6Se6. J Phys Condens Matter. 2020;32:215402.

    Article  CAS  Google Scholar 

  21. Xu C, Liu Y, Cai P, Li B, Jiao WH, Li Y, Zhang J, Zhou W, Qian B, Jiang X, Shi Z, Sankar R, Zhang JL, Yang F, Zhu ZW, Biswas P, Qian D, Ke X, Xu X. Anisotropic transport and quantum oscillations in the quasi-one-dimensional TaNiTe5: evidence for the nontrivial band topology. J Phys Chem Lett. 2020;11:7782.

    Article  CAS  Google Scholar 

  22. Jiao WH, Xie X, Liu Y, Xu X, Li B, Xu C, Liu J, Zhou W, Li Y, Yang H, Jiang S, Luo Y, Zhu ZW, Cao GH. Topological Dirac states in a layered telluride TaPdTe5 with quasi-one-dimensional PdTe5 chains. Phys Rev B. 2020;102:075141.

    Article  CAS  Google Scholar 

  23. Tomonaga S. Remarks on Bloch’s method of sound waves applied to many-Fermion problems. Prog Theor Phy. 1950;5:544.

    Article  Google Scholar 

  24. Luttinger JM. An exactly soluble model of a many-fermion system. J Math Phys. 1950;4:1154.

    Article  Google Scholar 

  25. Wakeham N, Bangura AF, Xu X, Mercure J, Greenblatt M, Hussey NE. Gross violation of the Wiedemann-Franz law in a quasi-one-dimensional conductor. Nat Commun. 2011;2:396.

    Article  Google Scholar 

  26. Lu J, Xu X, Greenblatt M, Jin R, Tinnemans P, Licciardello S, van Delft MR, Buhot J, Chudzinski P, Hussey NE. Emergence of a real-space symmetry axis in the magnetoresistance of the onedimensional conductor Li0.9Mo6O17. Sci Adv. 2019;5:8027.

    Article  Google Scholar 

  27. Giamarchi T. Theoretical framework for quasi-one dimensional systems. Chem Rev. 2004;104:50372.

    Article  Google Scholar 

  28. Xu X, Bangura AF, Analytis JG, Fletcher JD, French MMJ, Shannon N, He J, Zhang S, Mandrus D, Jin R, Hussey NE. Directional field-induced metallization of quasi-one-dimensional Li0.9Mo6O17. Phys Rev Lett. 2009;102:206602.

    Article  Google Scholar 

  29. Xu X, Carrington A, Coldea AI, Enayati-Rad A, Narduzzo A, Horii S, Hussey NE. Dimensionality-driven spinflop transition in quasi-one-dimensional PrBa2Cu4O8. Phys Rev B. 2010;81:224435.

    Article  Google Scholar 

  30. Zhang B, Wang Z, Liu S, Huang J. Synthesis and crystal structure of a new metal-rich layered ternary tantalum telluride TaNi2Te2. Acta Phys Chim Sin. 1994;10:508.

    Article  CAS  Google Scholar 

  31. Huang JL. Structure of Nb/Ta layered ternary tellurides containing first row transition metal atoms. Sci China (Ser B). 2000;43:337.

    Article  CAS  Google Scholar 

  32. Neuhausen J, Evstafyev VK, Kremer RK, Tremel W. TaNi2.05Te3, a novel telluride with stuffed TaFe1+xTe3 structure. Chem Berichte. 1994;127:9.

    Google Scholar 

  33. Zhang B, Wang ZM, Liu SX, Huang JL. Synthesis and crystal structure of a new layered terany tantalum telluride TaNi2Te3. Chin J Struct Chem. 1996;15:4.

    CAS  Google Scholar 

  34. Schwarz K, Blaha P, Madsen GKH. Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput Phys Commun. 2002;147:71.

    Article  Google Scholar 

  35. Wu Z, Cohen RE. More accurate generalized gradient approximation for solids. Phys Rev B. 2006;73:235116.

    Article  Google Scholar 

  36. Mostofi AA, Yates JR, Pizzi G, Lee YS, Souza I, Vanderbilt D, Marzari N. An updated version of wannier90: a tool for obtaining maximally-localised Wannier functions. Comput Phys Commun. 2014;185:2309.

    Article  CAS  Google Scholar 

  37. Wu QS, Zhang SN, Song HF, TroyerMand Soluyanov AA. WannierTools: an open-source software package for novel topological materials. Comput Phys Commun. 2018;224:405.

    Article  CAS  Google Scholar 

  38. Luo N, Miley GH. Kohler’s rule and relaxation rates in high-Tc superconductors. Phys C. 2002;371:259.

    Article  CAS  Google Scholar 

  39. Xu X, Jiao W, Zhou N, Guo Y, Li Y, Dai JH, Lin Z, Liu Y, Zhu ZW, Lu X, Yuan HQ, Cao GH. Quasi-linear magnetoresistance and the violation of Kohlers rule in the quasi-one-dimensional Ta4Pd3Te16 superconductor. J Phys Condens Matter. 2015;27:335701.

    Article  Google Scholar 

  40. Chan MK, Veit MJ, Dorow CJ, Ge Y, Li Y, Tabis W, Tang Y, Zhao X, Barisic N, Greven M. Possible coexistence of local itinerancy and global localization in a quasi-one-dimensional conductor. Phys Rev Lett. 2014;113:177005.

    Article  CAS  Google Scholar 

  41. Narduzzo A, Enayati-Rad A, Horii S, Hussey NE. Possible coexistence of local itinerancy and global localization in a quasi-one-dimensional conductor. Phys Rev Lett. 2007;98:146601.

    Article  CAS  Google Scholar 

  42. Liu QH, Zunger A. Predicted realization of cubic dirac fermion in quasi-one-dimensional transition-metal monochalcogenides. Phys Rev X. 2017;7:021019.

    Google Scholar 

  43. Fu L, Kane CL, Mele EJ. Topological insulators in three dimensions. Phys Rev Lett. 2007;98:106803.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 11974061, U1732162, and U1832147). Wen-He Jiao. is thankful for the financial support from the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY19A040002), and Bin Li thanks NUPTSF (Grant Nos. NY219087 and NY220038). Raman Sankar acknowledges the financial support from the Ministry of Science and Technology in Taiwan, China under Project MOST-108-2112-M-001-049-MY2 and from Academia Sinica for the budget of ASiMATE-109-13. The authors thank C. M. J. Andrew, A. F. Bangura, Zhen-Jie Feng, Xin Lu and Xian-Gang Wan for fruitful discussions. Xiang-Lin Ke acknowledges the financial support from the start-ups at Michigan State University.

Author information

Authors and Affiliations

Authors

Contributions

Xiao-Feng Xu and Bin Li wrote the draft. Kalaivaman R and Raman Sankar grew the single crystals used in this study. Yi Liu and Chun-Qiang Xu collected the experimental data; Raman Sankar and Xiao-Feng Xu conceived the project. All authors contributed to the writing and revisions.

Corresponding authors

Correspondence to Bin Li or Xiao-Feng Xu.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article Bin Li should also have been denoted as one of the corresponding authors. This article has two corresponding authors: Xiao-Feng Xu and Bin Li.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xu, CQ., Jiao, WH. et al. Anisotropic transport in a possible quasi-one-dimensional topological candidate: TaNi2Te3. Tungsten 5, 325–331 (2023). https://doi.org/10.1007/s42864-021-00098-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-021-00098-2

Keywords

Navigation