Facile NiCo2S4/C nanocomposite: an efficient material for water oxidation

Abstract

The water oxidation in alkaline media is a kinetically sluggish process and it requires an active electrocatalyst for overall water splitting which is a challenging task to date. Herein, we formulate a platform for the design of efficient NiCo2S4/C nanocomposite using earth abundant and nonprecious materials. The nanocomposites are prepared by scale up hydrothermal method using different carbon contents from acid dehydrated sucrose. They are structurally and morphologically characterized by various analytic techniques. The scanning electron microscopy has shown few microns flower-like morphology of nanocomposite and hexagonal crystalline phase is identified by X-ray diffraction (XRD). Further, high-resolution transmission electron microscopy supported the XRD results, and C, Ni, Co and O elements were found in the composition nanocomposite as investigated by energy-dispersive spectroscopy. The most active nanocomposite reaches a current density of 20 mA·cm−2 at potential of 285 mV vs reversible hydrogen electrode. The nanocomposite is kinetically supported by 61 mV·dec−1 as small Tafel slope. The nanocomposite is stable and durable for 40 h. The electrochemical impedance spectroscopy described a small charge transfer resistance of 188.4 Ω. These findings suggest that the NiCo2S4/C nanocomposite could be used as a promising material for an extended range of applications particularly in energy technology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS. Solar water splitting cells. Chem Rev. 2010;110(11):6446.

    CAS  Google Scholar 

  2. 2.

    Salama A. Foundations of environmental physics: understanding energy use and human impacts, by Kyle Forinash. Contemp Phys. 2012;53(1):71.

    Google Scholar 

  3. 3.

    D' Agosto M de A. Transportation, Energy Use and Environmental Impacts (chapter 5: energy sources for transportation). India: Elsevier. 2019; p. 177.

  4. 4.

    Kaunda CS, Kimambo CZ, Nielsen TK. Hydropower in the context of sustainable energy supply: a review of technologies and challenges. Int Sch Res Not. 2012;2012:730631.

    Google Scholar 

  5. 5.

    Zhuang Z, Yuan F, Ye H, Yao J. Study on auxiliary heat sources in solar hot water system in China. Energy Procedia. 2017;142:3.

    Google Scholar 

  6. 6.

    Dittmar M. Nuclear energy: status and future limitations. Energy. 2012;37(1):35.

    Google Scholar 

  7. 7.

    Lenzen M. Life cycle energy and greenhouse gas emissions of nuclear energy: a review. Energy Convers Manag. 2008;49(8):2178.

    CAS  Google Scholar 

  8. 8.

    Kumar I, Tyner WE, Sinha KC. Input–output life cycle environmental assessment of greenhouse gas emissions from utility scale wind energy in the United States. Energy Policy. 2016;89:294.

    CAS  Google Scholar 

  9. 9.

    Rivard E, Trudeau M, Zaghib K. Hydrogen storage for mobility: a review. Materials (Basel). 2019;12(12):1973.

    CAS  Google Scholar 

  10. 10.

    Abe JO, Popoola API, Ajenifuja E, Popoola OM. Hydrogen energy, economy and storage: review and recommendation. Int J Hydrogen Energy. 2019;44(29):15072.

    CAS  Google Scholar 

  11. 11.

    Karchiyappan T. A review on hydrogen energy production from electrochemical system: benefits and challenges. Energy Sour Part A Recovery Util Environ Eff. 2019;41(7):902.

    CAS  Google Scholar 

  12. 12.

    Coutanceau C, Baranton S, Audichon T. Chapter 1—hydrogen electrochemical production, hydrogen energy and fuel cells primers. Chennai: Academic Press; 2018. p. 1.

    Google Scholar 

  13. 13.

    Choi S, Davenport TC, Haile SM. Protonic ceramic electrochemical cells for hydrogen production and electricity generation: exceptional reversibility, stability, and demonstrated faradaic efficiency. Energy Environ Sci. 2019;12(1):206.

    CAS  Google Scholar 

  14. 14.

    Tong Y, Wu J, Chen P, Liu H, Chu W, Wu C, Xie Y. Vibronic superexchange in double perovskite electrocatalyst for efficient electrocatalytic oxygen evolution. J Am Chem Soc. 2018;140(36):11165.

    CAS  Google Scholar 

  15. 15.

    Rong X, Parolin J, Kolpak AM. A Fundamental Relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal. 2016;6(2):1153.

    CAS  Google Scholar 

  16. 16.

    Bockri JO, Otagawa T. Mechanism of oxygen evolution on perovskites. J Phys Chem. 1983;87(15):2960.

    Google Scholar 

  17. 17.

    Shi Q, Zhu C, Du D, Lin Y. Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem Soc Rev. 2019;48(12):3181.

    CAS  Google Scholar 

  18. 18.

    Li W, Xiong D, Gao X, Liu L. The oxygen evolution reaction enabled by transition metal phosphide and chalcogenide pre-catalysts with dynamic changes. Chem Commun. 2019;55(60):8744.

    CAS  Google Scholar 

  19. 19.

    Finke CE, Omelchenko ST, Jasper JT, Lichterman MF, Read CG, Lewis NS, Hoffmann MR. Enhancing the activity of oxygen-evolution and chlorine-evolution electrocatalysts by atomic layer deposition of TiO2. Energy Environ Sci. 2019;12(1):358.

    CAS  Google Scholar 

  20. 20.

    Man HW, Tsang CS, Li MMJ, Mo J, Huang B, Lee LYS, Leung YC, Wong KY, Tsang SCE. Tailored transition metal-doped nickel phosphide nanoparticles for the electrochemical oxygen evolution reaction (OER). Chem Commun. 2018;54(62):8630.

    CAS  Google Scholar 

  21. 21.

    Theerthagiri J, Sudha R, Premnath K, Arunachalam P, Madhavan J, Al-Mayouf AM. Growth of iron diselenide nanorods on graphene oxide nanosheets as advanced electrocatalyst for hydrogen evolution reaction. Int J Hydrog Energy. 2017;42(18):13020.

    CAS  Google Scholar 

  22. 22.

    Jin S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett. 2017;2:1937.

    CAS  Google Scholar 

  23. 23.

    Hu X, Zhang S, Sun J, Yu L, Qian X, Hu R, Wang Y, Zhao H, Zhu J. 2D Fe-containing cobalt phosphide/cobalt oxide lateral heterostructure with enhanced activity for oxygen evolution reaction. Nano Energy. 2019;56:109.

    CAS  Google Scholar 

  24. 24.

    Zhang M, Liu Y, Liu B, Chen Z, Xu H, Yan K. Trimetallic NiCoFe-layered double hydroxides nanosheets efficient for oxygen evolution and highly selective oxidation of biomass-derived 5-hydroxymethylfurfural. ACS Catal. 2020;10(9):5179.

    CAS  Google Scholar 

  25. 25.

    Liu Y, Zhang M, Hu D, Li R, Hu K, Yan K. Ar plasma-exfoliated ultrathin NiCo-layered double hydroxide nanosheets for enhanced oxygen evolution. ACS Appl Energy Mater. 2019;2(2):1162.

    CAS  Google Scholar 

  26. 26.

    Li Y, Hasin P, Wu Y. NixCo3-xO4 nanowire arrays for electrocatalytic oxygen evolution. Adv Mater. 2010;22(17):1926.

    CAS  Google Scholar 

  27. 27.

    Gong M, Dai H. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015;8(1):23.

    CAS  Google Scholar 

  28. 28.

    Paulraj AR, Kiros Y, Göthelid M, Johansson MB. NiFeOx as a bifunctional electrocatalyst for oxygen reduction (OR) and evolution (OE) reaction in alkaline media. Catalysts. 2018;8(8):328.

    Google Scholar 

  29. 29.

    Shin H, Xiao H, Goddard WA. In silico discovery of new dopants for Fe-doped Ni oxyhydroxide (Ni1–xFexOOH) catalysts for oxygen evolution reaction. J Am Chem Soc. 2018;140(22):6745.

    CAS  Google Scholar 

  30. 30.

    Kim JS, Kim B, Kim H, Kang K. Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv Energy Mater. 2017;8(11):1702774.

    Google Scholar 

  31. 31.

    Xie L, Zhao D, Dai J, Wu Z, Li L. Solvothermally doping NiS2 nanoparticles on carbon with ferric ions for efficient oxygen evolution catalysis. Catalysts. 2019;9(5):458.

    CAS  Google Scholar 

  32. 32.

    Ding J, Ji S, Wang H, Gai H, Liu F, Linkov V, Wang R. Mesoporous nickel-sulfide/nickel/N-doped carbon as HER and OER bifunctional electrocatalyst for water electrolysis. Int J Hydrog Energy. 2019;44(5):2832.

    CAS  Google Scholar 

  33. 33.

    Lu Z, Wang J, Huang S, Hou Y, Li Y, Zhao Y, Mu S, Zhang J, Zhao Y. N, B-codoped defect-rich graphitic carbon nanocages as high performance multifunctional electrocatalysts. Nano Energy. 2017;42:334.

    CAS  Google Scholar 

  34. 34.

    Liu Q, Jin J, Zhang J. NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl Mater Interfaces. 2013;5(11):5002.

    CAS  Google Scholar 

  35. 35.

    Fontcuberta I Morral A, Arbiol J, Prades JD, Cirera A, Morante JR. Synthesis of silicon nanowires with Wurtzite crystalline structure by using standard chemical vapor deposition. Adv Mater. 2007;19(10):1347.

    CAS  Google Scholar 

  36. 36.

    Bi Y, Cai Z, Zhou D, Tian Y, Zhang Q, Zhang Q, Kuang Y, Li Y, Sun X, Duan X. Understanding the incorporating effect of Co2+/Co3+ in NiFe-layered double hydroxide for electrocatalytic oxygen evolution reaction. J Catal. 2018;358:100.

    CAS  Google Scholar 

  37. 37.

    Koper MTM. Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis. J Electroanal Chem. 2011;660(2):254.

    CAS  Google Scholar 

  38. 38.

    Grimaud A, Diaz-Morales O, Han B, Hong WT, Lee YL, Giordano L, Stoerzinger KA, Koper MTM, Shao-Horn Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat Chem. 2017;9:457.

    CAS  Google Scholar 

  39. 39.

    Palmas S, Polcaro AM, Ferrara F, Rodriguez Ruiz J, Delogu F, Bonatto-Minella C, Mulas G. Electrochemical performance of mechanically treated SnO2 powders for OER in acid solution. J Appl Electrochem. 2008;38(7):907.

    CAS  Google Scholar 

  40. 40.

    Da Silva LM, De Faria LA, Boodts JFC. Green processes for environmental application. Electrochemical ozone production. Pure Appl Chem. 2001;73(12):1871.

    Google Scholar 

  41. 41.

    Ollo K, Guillaume PLA, Auguste AFT, Quand-Meme GC, Honoré KK, Ouattara L. Influence of various metallic oxides on the kinetic of the oxygen evolution reaction on platinum electrodes. J Electrochem Sci Eng. 2015;5(2):79.

    CAS  Google Scholar 

  42. 42.

    Aftab U, Tahira A, Mazzaro R, Abro MI, Baloch MM, Willander M, Nur O, Yu C, Ibupoto ZH. The chemically reduced CuO–Co3O4 composite as a highly efficient electrocatalyst for oxygen evolution reaction in alkaline media. Catal Sci Technol. 2019;9(22):6274.

    CAS  Google Scholar 

  43. 43.

    Nivetha R, Kollu P, Chandar K, Pitchaimuthu S, Kwan Jeong S, Nirmala GA. Role of MIL-53(Fe)/hydrated–dehydrated MOF catalyst for electrochemical hydrogen evolution reaction (HER) in alkaline medium and photocatalysis. RSC Adv. 2019;9(6):3215.

    CAS  Google Scholar 

  44. 44.

    Xiang Z, Zhang Z, Xu X, Zhang Q, Yuan C. MoS2 nanosheets array on carbon cloth as a 3D electrode for highly efficient electrochemical hydrogen evolution. Carbon. 2016;98:84.

    CAS  Google Scholar 

  45. 45.

    Su D, Wang J, Jin H, Gong Y, Li M, Pang Z, Wang Y. From, “waste to gold”: a one-pot method to synthesize ultrafinely dispersed Fe2O3-based nanoparticles on N-doped carbon for synergistic and efficient water splitting. J Mater Chem A. 2015;3(22):11756.

    CAS  Google Scholar 

  46. 46.

    Jadhav HS, Roy A, Thorat GM, Chung WJ, Seo JG. Hierarchical free-standing networks of MnCo2S4 as efficient electrocatalyst for oxygen evolution reaction. J Ind Eng Chem. 2019;71:452.

    CAS  Google Scholar 

  47. 47.

    Li Y, Li FM, Meng XY, Li SN, Zeng JH, Chen Y. Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. ACS Catal. 2018;8(3):1913.

    CAS  Google Scholar 

  48. 48.

    Tan C, Cao J, Khattak AM, Cai F, Jiang B, Yang G, Hu S. High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries. J Power Sour. 2014;270:28.

    CAS  Google Scholar 

  49. 49.

    Naeem R, Ehsan MA, Yahya R, Sohail M, Khaledi H, Mazhar M. Fabrication of pristine Mn2O3 and Ag–Mn2O3 composite thin films by AACVD for photoelectrochemical water splitting. Dalton Trans. 2016;45(38):14928.

    CAS  Google Scholar 

  50. 50.

    Song Q, Li J, Wang L, Qin Y, Pang L, Liu H. Stable single-atom cobalt as a strong coupling bridge to promote electron transfer and separation in photoelectrocatalysis. J Catal. 2019;370:176.

    CAS  Google Scholar 

Download references

Acknowledgements

Raffaello Mazzaro and Vittorio Morandi gratefully acknowledge the European Union’s Horizon 2020 research and innovation programme under Graphene Core2 785219-Graphene Flagship for partial funding. We extend our sincere appreciation to the Researchers Supporting Project (No. RSP-2020/79) at King Saud University, Riyadh, Saudi Arabia.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Umair Aftab or Zafar Hussain Ibupoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3520 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aftab, U., Tahira, A., Mazzaro, R. et al. Facile NiCo2S4/C nanocomposite: an efficient material for water oxidation. Tungsten 2, 403–410 (2020). https://doi.org/10.1007/s42864-020-00066-2

Download citation

Keywords

  • NiCo2S4/C
  • Water oxidation
  • Alkaline media
  • Stable and durable