Skip to main content
Log in

Effects of tungsten source and tartrate additive on the microstructure and photoluminescence of hydrothermally crystallized ZnWO4

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

Tungstate source and tartrate (Tar2−) additive were examined for their influences on the hydrothermal formation and characteristics of ZnWO4 nanocrystals. It was clearly shown that quasi-equiaxed nanocrystallites of ~ 50–100 nm in diameter and nanorods of ~ 40–50 nm in diameter and up to ~ 700 nm in length can be generated with (NH4)10W12O41·5H2O and K2WO4·2H2O as tungsten sources, respectively. Introducing Tar2− into the K2WO4·2H2O reaction system effectively transformed the primary crystallites of ZnWO4 from nanorods into quasi-equiaxed nanocrystals (~ 20–50 nm) and then nanoplates (thickness of ~ 20 nm, lateral size of ~ 200 nm) and, meanwhile, aggregated the crystallites into spheroidal clusters (~ 2–3 µm in diameter) with the increasing Tar2−/Zn2+ molar ratio up to ~ 2. Optical spectroscopy revealed that the ZnWO4 products exhibit broad-band photoluminescence (~ 425–700 nm) through 3T1u → 1A1g transition of the [WO6]6− ligand under short ultraviolet excitation and the nanorods show the best luminescence among all tested samples. Calcination at 500 °C may effectively remove the adsorbed Tar2− species and greatly improve luminescence of the samples synthesized in the presence of Tar2−.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H. One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater. 2003;15(5):353.

    Article  CAS  Google Scholar 

  2. Shao B, Zhao Q, Guo N, Jia Y, Lv W, Jiao M, Lü W, You H. Monodisperse YVO4:Eu3+ submicrocrystals: controlled synthesis and luminescence properties. Cryst Eng Comm. 2013;15(29):5776.

    Article  CAS  Google Scholar 

  3. Li Y, Liu J, Huang X, Li G. Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres. Cryst Growth Des. 2007;7(7):1350.

    Article  CAS  Google Scholar 

  4. Zhang Y, Or SW, Zhang Z. Hydrothermal self-assembly of hierarchical cobalt hyperbranches by a sodium tartrate-assisted route. RSC Adv. 2011;1(7):1287.

    Article  CAS  Google Scholar 

  5. Martins GM, Coelho PO, Siqueira KPF, Moreira RL, Dias A. Investigation of polymorphism and vibrational properties of MnMoO4 microcrystals prepared by a hydrothermal process. Cryst Growth Des. 2018;18(4):2474.

    Article  CAS  Google Scholar 

  6. Wu H, Xu H, Su Q, Chen T, Wu M. Size- and shape-tailored hydrothermal synthesis of YVO4 crystals in ultra-wide pH range conditions. J Mater Chem. 2003;13(5):1223.

    Article  CAS  Google Scholar 

  7. Sugimoto T. Preparation of monodispersed colloidal particles. Adv Colloid Interface Sci. 1987;28:65.

    Article  CAS  Google Scholar 

  8. Penn RL, Banfield JF. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science. 1998;281(5379):969.

    Article  CAS  Google Scholar 

  9. Yang J, Li C, Quan Z, Zhang C, Yang P, Li Y, Yu C, Lin J. Self-assembled 3D flowerlike Lu2O3 and Lu2O3:Ln3+ (Ln = Eu, Tb, Dy, Pr, Sm, Er, Ho, Tm) microarchitectures: ethylene glycol-mediated hydrothermal synthesis and luminescent properties. J Phys Chem C. 2008;112(33):12777.

    Article  CAS  Google Scholar 

  10. Zhao Q, Shao B, Lü W, Jia Y, Lv W, Jiao M, You H. Ba2GdF7 nanocrystals: solution-based synthesis, growth mechanism, and luminescence properties. Cryst Growth Des. 2014;14(4):1819.

    Article  CAS  Google Scholar 

  11. Wu J, Duan F, Zheng Y, Xie Y. Synthesis of Bi2WO6 nanoplate-built hierarchical nest-like structures with visible-light-induced photocatalytic activity. J Phys Chem C. 2007;111(34):12866.

    Article  CAS  Google Scholar 

  12. Yin S, Asakura Y. Recent research progress on mixed valence state tungsten based materials. Tungsten. 2019;1(1):5.

    Article  Google Scholar 

  13. Liu X, Fan HQ. Theoretical studies on electronic structure and optical properties of Bi2WO6. Optik. 2018;158:962.

    Article  CAS  Google Scholar 

  14. He G, Fan H, Ma L, Wang K, Ding D, Liu C, Wang Z. Synthesis, characterization and optical properties of nanostructured ZnWO4. Mater Sci Semicond Process. 2016;41:404.

    Article  CAS  Google Scholar 

  15. Gao B, Fan H, Zhang X, Song L. Template-free hydrothermal synthesis and high photocatalytic activity of ZnWO4 nanorods. Mater Sci Eng, B. 2012;177(13):1126.

    Article  CAS  Google Scholar 

  16. Gao B, Fan H, Zhang X. Hydrothermal synthesis of CdWO4 nanorods and their photoluminescence properties. S Afr J Chem. 2012;65:125.

    CAS  Google Scholar 

  17. Long C, Fan H, Li M, Li Q. Effect of lanthanum and tungsten co-substitution on the structure and properties of new Aurivillius oxides Na0.5La0.5Bi2Nb2-xWxO9. Cryst Eng Comm. 2012;14(21):7201.

    Article  CAS  Google Scholar 

  18. Zhang M, Fan H, Zhao N, Peng H, Ren X, Wang W, Li H, Chen G, Zhu Y, Jiang X, Wu P. 3D hierarchical CoWO4/Co3O4 nanowire arrays for asymmetric supercapacitors with high energy density. Chem Eng J. 2018;347(1):291.

    Article  CAS  Google Scholar 

  19. Li M, Meng Q, Li S, Li F, Zhu Q, Kim BN, Li JG. Photoluminescent and photocatalytic ZnWO4 nanorods via controlled hydrothermal reaction. Ceram Int. 2019;45(8):10746.

    Article  CAS  Google Scholar 

  20. Hyde BG, Andersson S. Inorganic crystal structure. New York: Wiley; 1989.

    Google Scholar 

  21. Pereira PFS, Gouveia AF, Assis M, de Oliveira RC, Pinatti IM, Penha M, Goncalves RF, Gracia L, Andrés J, Longo E. ZnWO4 nanocrystals: synthesis, morphology, photoluminescence and photocatalytic properties. Phys Chem Chem Phys. 2018;20(3):1923.

    Article  CAS  Google Scholar 

  22. Lin J, Lin J, Zhu Y. Controlled synthesis of the ZnWO4 nanostructure and effects on the photocatalytic performance. Inorg Chem. 2007;46(20):8372.

    Article  CAS  Google Scholar 

  23. Shi N, Xiong S, Wu F, Bai J, Chu Y, Mao H, Feng J, Xi B. Hydrothermal synthesis of ZnWO4 hierarchical hexangular microstars for enhanced lithium-storage properties. Eur J Inorg Chem. 2017;2017(3):734.

    Article  CAS  Google Scholar 

  24. Zhao W, Ma X. ZnWO4 nanosheets anchored into reduced graphene oxide as anode materials for enhanced sodium-ion storage performance. J Alloys Compos. 2019;774(5):378.

    Article  CAS  Google Scholar 

  25. Yu SH, Liu B, Mo MS, Huang JH, Liu XM, Qian YT. General synthesis of single-crystal tungstate nanorods/nanowires: a facile, low-temperature solution approach. Adv Funct Mater. 2003;13(8):639.

    Article  CAS  Google Scholar 

  26. Lou XW, Zeng HC. Complex α-MoO3 nanostructures with external bonding capacity for self-assembly. J Am Chem Soc. 2003;125(9):2697.

    Article  CAS  Google Scholar 

  27. Shad NA, Bajwa SZ, Amin N, Taj A, Hameed S, Khan Y, Dai Z, Cao C, Khan WS. Solution growth of 1D zinc tungstate (ZnWO4) nanowires; design, morphology, and electrochemical sensor fabrication for selective detection of chloramphenicol. J Hazard Mater. 2019;367(5):205.

    Article  CAS  Google Scholar 

  28. Bai S, Hussain S, Ge CX, Javed MS, Shah S, Liu G, Qiao G. Unique oblate-like ZnWO4 nanostructures for electrochemical energy storage performances. Mater Lett. 2019;240(1):103.

    Article  CAS  Google Scholar 

  29. Li M, Takei T, Zhu Q, Kim BN, Li JG. Morphology tailoring of ZnWO4 crystallites/architectures and photoluminescence of the doped RE3+ ions (RE = Sm, Eu, Tb, and Dy). Inorg Chem. 2019;58(14):9432.

    Article  CAS  Google Scholar 

  30. Li C, Yang J, Quan Z, Yang P, Kong D, Lin J. Different microstructures of β-NaYF4 fabricated by hydrothermal process: effects of pH values and fluoride sources. Chem Mater. 2007;19(20):4933.

    Article  CAS  Google Scholar 

  31. Kaminskii AA, Eichler HJ, Ueda KI, Klassen NV, Boris R, Li LE, Findeisen J, Jaque D, García-Sole J, Fernández J, Balda R. Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and undoped monoclinic ZnWO4 and CdWO4 as laser-active and stimulated Raman scattering-active crystal. Appl Optic. 1999;38(21):4533.

    Article  CAS  Google Scholar 

  32. Torres J, Tissot F, Santos P, Ferrari C, Kremer C, Kremer E. Interactions of W (VI) and Mo (VI) oxyanions with metal cations in natural waters. J Sol Chem. 2016;45(11):1598.

    Article  CAS  Google Scholar 

  33. Davantès A, Costa D, Lefèvre G. Infrared study of (poly)tungstate ions in solution and sorbed into layered double hydroxides: vibrational calculations and in situ analysis. J Phys Chem C. 2015;119(22):12356.

    Article  CAS  Google Scholar 

  34. Ryabchikov DI, Terentyeva EA. Progress in the science and technology of the rare earths. New York: Pergamon Press; 1964.

    Google Scholar 

  35. Li Z, Xie Y, Xiong Y, Zhang R. A novel non-template solution approach to fabricate ZnO hollow spheres with a coordination polymer as a reactant. New J Chem. 2003;27(10):1518.

    Article  CAS  Google Scholar 

  36. Wang M, Huang QL, Hong JM, Chen XT, Xue ZL. Controlled synthesis and characterization of nanostructured EuF3 with different crystalline phases and morphologies. Cryst Growth Des. 2006;6(9):2169.

    Article  CAS  Google Scholar 

  37. Gadsden JA. Infrared spectra of minerals and related inorganic compounds. Boston: Butterworths; 1975.

    Google Scholar 

  38. Hayashi S, Nakamori N, Kanamori H, Yodogawa Y, Yamamoto K. Infrared study of surface phonon modes in ZnO, CdS and BeO small crystals. Surf Sci. 1979;86(2):665.

    Article  CAS  Google Scholar 

  39. Huang G, Zhu Y. Synthesis and photocatalytic performance of ZnWO4 catalyst. Mater Sci Eng B. 2007;139(2–3):201.

    Article  CAS  Google Scholar 

  40. Mikhailik VB, Kraus H, Miller G, Mykhaylyk MS, Wahl D. Luminescence of CaWO4, CaMoO4, and ZnWO4 scintillating crystals under different excitations. J Appl Phys. 2005;97:083523.

    Article  CAS  Google Scholar 

  41. Tanaka D, Oaki Y, Imai H. Enhanced photocatalytic activity of quantum-confined tungsten trioxide nanoparticles in mesoporous silica. Chem Commun. 2010;46(29):5286.

    Article  CAS  Google Scholar 

  42. Lou Z, Hao J, Cocivera M. Luminescence of ZnWO4 and CdWO4 thin films prepared by spray pyrolysis. J Lumin. 2002;99(4):349.

    Article  CAS  Google Scholar 

  43. Tian Y, Chen B, Yu H, Hua R, Li X, Sun J, Cheng L, Zhong H, Zhang J, Zheng Y, Yu T, Huang L. Controllable synthesis and luminescent properties of three-dimensional nanostructured CaWO4:Tb3+ microspheres. J Colloid Interface Sci. 2011;360(2):586.

    Article  CAS  Google Scholar 

  44. Zheng H, Chen B, Yu H, Zhang J, Sun J, Li X, Sun M, Tian B, Fu S, Zhong H, Dong B, Hua R, Xia H. Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures. J Colloid Interface Sci. 2014;420:27.

    Article  CAS  Google Scholar 

  45. Fang J, Fan H, Ma Y, Wang Z, Chang Q. Surface defects control for ZnO nanorods synthesized by quenching and their anti-recombination in photocatalysis. Appl Surf Sci. 2015;332(30):47.

    Article  CAS  Google Scholar 

  46. Fang J, Fan H, Tian H, Dong G. Morphology control of ZnO nanostructures for high efficient dye-sensitized solar cells. Mater Charact. 2015;108:51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51672039 and 51972047). Mei-Ting Li acknowledges the financial support from the China Scholarship Council for her Ph.D. Study in Japan (Contract No. 201706080059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Guang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, MT., Li, JG., Zhu, Q. et al. Effects of tungsten source and tartrate additive on the microstructure and photoluminescence of hydrothermally crystallized ZnWO4. Tungsten 1, 266–275 (2019). https://doi.org/10.1007/s42864-019-00030-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-019-00030-9

Keywords

Navigation