Skip to main content

Advertisement

Log in

Partial surface phase transformation of Li3VO4 that enables superior rate performance and fast lithium-ion storage

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

Li3VO4 is a promising electrode material for next-generation lithium-ion batteries (LIBs) due to its excellent specific capacity (592 mAh g−1), suitable discharge voltage (0.5–1.0 V), and moderate volume change upon charge/discharge, while it still suffers from low electronic conductivity that usually gives a poor rate capability, low initial coulombic efficiency, and large polarization, imposing a challenge on its practical applications. In this work, a partial surface phase transformation of Li3VO4 was initiated via a freeze-drying method followed by a heat treatment in inert gas. Using this method, Li3VO4 was integrated with a conductive layer LiVO2 and carbon matrix. The synergistic effect among Li3VO4, LiVO2 layer, and carbon matrix was systematically studied by optimizing the treatment conditions. When treated at 600 °C in Ar, Li3VO4-based composite delivered outstanding electrochemical properties, as expressed by a specific capacity (689 mAh g−1 at 0.1 A g−1 after 100 cycles), rate performance (i.e., 448 mAh g−1 at 2 A g−1), and longtime cycle stability (523 mAh g−1 after 200 cycles at 0.2 A g−1), which are superior to those without LiVO2 conductive layer when treated at the same temperature in air. The findings reported in this work may offer novel hints of preparing more advanced anodes and promote the applications of vanadate materials such as Li3VO4 for next-generation lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. Kong H, Wu Y, Hong W, Yan C, Zhao Y, Chen G. Structure-designed synthesis of Cu-doped Co3O4@N-doped carbon with interior void space for optimizing alkali-ion storage. Energy Storage Mater. 2019. https://doi.org/10.1016/j.ensm.2019.06.015.

    Article  Google Scholar 

  2. Zhang D, Xi S, Li G, Li B, Fan J, Liu X, Chen D, Li L. Facile synthesis of Mn2.1V0.9O4/rGO: A novel high-rate anode material for lithium-ion batteries. J Power Sources. 2019;426:197.

    Article  CAS  Google Scholar 

  3. Liu Y, Chen Z, Jia H, Xu H, Liu M, Wu R. Iron-doping-induced phase transformation in dual-carbon-confined cobalt diselenide enabling superior lithium storage. ACS Nano. 2019;13(5):6113.

    Article  CAS  Google Scholar 

  4. Zhu Z, Tang Y, Leow W, Xia H, Lv Z, Wei J, Ge X, Cao S, Zhang Y, Zhang W, Zhang H, Xi S, Du Y, Chen X. Approaching the lithiation limit of MoS2 while maintaining its layered crystalline structure to improve lithium storage. Angew Chem Int Ed. 2019;58(11):3521.

    Article  CAS  Google Scholar 

  5. Li X, Li K, Zhu SC, Fan K, Lyu L, Yao H, Li Y, Hu J, Huang H, Mai YW, Goodenough JB. Fiber-in-tube design of Co9S8–carbon/Co9S8: enabling efficient sodium storage. Angew Chem Int Ed. 2019;58(19):1.

    Article  Google Scholar 

  6. Hwang S, Yao Z, Zhang L, Fu M, He K, Mai L, Chris W, Su D. Multistep lithiation of tin sulfide: an investigation using in situ electron microscopy. ACS Nano. 2018;12(4):3638.

    Article  CAS  Google Scholar 

  7. Wei X, Wang X, Tan X, An Q, Mai L. Nanostructured conversion-type negative electrode materials for low-cost and high-performance sodium-ion batteries. Adv Funct Mater. 2018;28(46):1804458.

    Article  Google Scholar 

  8. Yan Z, Guo J. High-performance silicon-carbon anode material via aerosol spray drying and magnesiothermic reduction. Nano Energy. 2019;63:103845.

    Article  CAS  Google Scholar 

  9. Zhang D, Li G, Yu M, Fan J, Li B, Li L. Facile synthesis of Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet as high-performance anode for lithium-ion batteries. J Power Sources. 2018;384:34.

    Article  CAS  Google Scholar 

  10. Deng J, Yu X, Qin X, Zhou D, Zhang L, Duan H, Kang F, Li B, Wang G. Co–B nanoflakes as multifunctional bridges in ZnCo2O4 micro-/nanospheres for superior lithium storage with boosted kinetics and stability. Adv Energy Mater. 2019;9(14):1803612.

    Article  Google Scholar 

  11. Liu H, Hu P, Yu Q, Liu Z, Zhu T, Luo W, Zhou L, Mai L. Boosting the deep discharging/charging lithium storage performances of Li3VO4 through double-carbon decoration. ACS Appl Mater Interfaces. 2018;10(28):23938.

    Article  CAS  Google Scholar 

  12. Huang Y, Yang H, Zhang Y, Zhang Y, Wu Y, Tian M, Chen P, Trout R, Ma Y, Wu TH, Wu Y, Liu N. A safe and fast-charging lithium-ion battery anode using MXene supported Li3VO4. J. Mater. Chem. A. 2019;7:11250.

    Article  CAS  Google Scholar 

  13. Dompablo MEA, Tartaj P, Amarilla JM, Amador U. Computational investigation of Li insertion in Li3VO4. Chem Mater. 2016;28(16):5643.

    Article  Google Scholar 

  14. Zeng J, Yang Y, Li C, Li J, Huang J, Wang J, Zhao J. Li3VO4: an insertion anode material for magnesium ion batteries with high specific capacity. Electrochim Acta. 2017;247:265.

    Article  CAS  Google Scholar 

  15. Liang Z, Zhao Y, Ouyang L, Dong Y, Kuang Q, Lin X, Liu X, Yan D. Synthesis of carbon-coated Li3VO4 and its high electrochemical performance as anode material for lithium-ion batteries. J Power Sources. 2014;252:244.

    Article  CAS  Google Scholar 

  16. Yang Y, Li J, He X, Wang J, Sun D, Zhao J. A facile spray drying route for mesoporous Li3VO4/C hollow spheres as an anode for long life lithium ion batteries. J. Mater. Chem. A. 2016;4:7165.

    Article  CAS  Google Scholar 

  17. Liao C, Wen Y, Shan B, Zhai T, Li H. Probing the capacity loss of Li3VO4 anode upon Li insertion and extraction. J Power Sources. 2017;348:48.

    Article  CAS  Google Scholar 

  18. Ni S, Zhang J, Ma J, Yang X, Zhang L. Superior electrochemical performance of Li3VO4/N-doped C as an anode for Li-ion batteries. J. Mater. Chem. A. 2015;3(35):17951.

    Article  CAS  Google Scholar 

  19. Liu X, Li G, Zhang D, Chen D, Wang X, Li B, Li L. Fe-doped Li3VO4 as an excellent anode material for lithium ion batteries: optimizing rate capability and cycling stability. Electrochim Acta. 2019;308:185.

    Article  CAS  Google Scholar 

  20. Shen L, Chen S, Maier J, Yu Y. Carbon-coated Li3VO4 spheres as constituents of an advanced anode material for high-rate long-life lithium-ion batteries. Adv Mater. 2017;29(33):1701571.

    Article  Google Scholar 

  21. Kang T, Shen D, Ni S, Chen Q, Li T, Yang X, Zhao J. Pseudocapacitive charge storage induced by self-enhanced electrical conductivity and Li-ion diffusion in high performance Li3VO4@LiVO2 anode for Li-ion batteries. J Alloy Compd. 2018;741:442.

    Article  CAS  Google Scholar 

  22. Li X, Su Z, Tian H, Zhang Y. Rhombohedral-structured LiVO2 prepared by a novel two step method and its electrochemical properties. Int J Electrochem Sci. 2017;12:693.

    Article  Google Scholar 

  23. Armstrong AR, Lyness C, Panchmatia PM, Islam MS, Bruce PG. The lithium intercalation process in the low-voltage lithium battery anode Li1+xV1−xO2. Nature Mater. 2011;10:223.

    Article  CAS  Google Scholar 

  24. Liu X, Zhang D, Li G, Xue C, Ding J, Li B, Chen D, Li L. In situ synthesis of V2O3 nanorods anchored on reduced graphene oxide as high-performance lithium ion battery anode. ChemistrySelect. 2018;3(43):12108.

    Article  CAS  Google Scholar 

  25. Zhou LL, Shen SY, Peng XX, Wu LN, Wang Q, Shen CH, Tu TT, Huang L, Li JT, Sun SG. New insights into the structure changes and interface properties of Li3VO4 anode for lithium-ion batteries during the initial cycle by in-situ techniques. ACS Appl Mater Interfaces. 2016;8:23739.

    Article  CAS  Google Scholar 

  26. Zhang CK, Liu CF, Nan XH, Song HQ, Liu YG, Zhang CP, Cao GZ. Hollow-cuboid Li3VO4/C as high-performance anodes for lithium-ion batteries. ACS Appl Mater Interfaces. 2016;8(36):680.

    Article  CAS  Google Scholar 

  27. Zhang C, Wang K, Liu C, Nan X, Fu H, Ma W, Li Z, Cao G. Effects of high surface energy on lithium-ion intercalation properties of Ni-doped Li3VO4. NPG Asia Mater. 2016;8:e287.

    Article  CAS  Google Scholar 

  28. Zhou J, Zhao B, Song J, Chen B, Ma X, Dai J, Zhu X, Sun Y. Optimization of rate capability and cyclability performance in Li3VO4 anode material through Ca doping. Chem Eur J. 2017;23(64):16338.

    Article  CAS  Google Scholar 

  29. Xu X, Niu F, Wang C, Li Y, Zhao C, Yang J, Qian Y. Li3VO4 nanoparticles in N-doped carbon with porous structure as an advanced anode material for lithium-ion batteries. Chem Eng J. 2019;370:606.

    Article  CAS  Google Scholar 

  30. Yang Y, Li J, Huang J, Huang J, Zeng J, Zhao J. Polystyrene-template-assisted synthesis of Li3VO4/C/rGO ternary composite with honeycomb-like structure for durable high-rate lithium ion battery anode materials. Electrochim Acta. 2017;247:771.

    Article  CAS  Google Scholar 

  31. Zhang D, Li G, Li B, Fan J, Chen D, Liu X, Li L. Fast synthesis of Co1.8V1.2O4/rGO as a high-rate anode material for lithium-ion batteries. Chem. Commun. 2018;54:7689.

    Article  CAS  Google Scholar 

  32. Zhang D, Li G, Fan J, Li B, Li L. Tuning shell thickness of MnO/C core-shell nanowires for optimum performance of lithium-ion batteries. Chem Res Chin Univ. 2017;33(6):924.

    Article  CAS  Google Scholar 

  33. Zhao L, Duan H, Zhao Y, Kuang Q, Fan Q, Chen L, Dong Y. High capacity and stability of Nb-doped Li3VO4 as an anode material for lithium ion batteries. J Power Sources. 2018;378:618.

    Article  CAS  Google Scholar 

  34. Wang K, Fu H, Li Z, Xia M, Liang X, Qi R, Cao G, Lu X. Enhancing the rate performance of a Li3VO4 anode through Cu doping. ChemElectroChem. 2018;5(3):478.

    Article  Google Scholar 

  35. Li Q, Wei Q, Sheng J, Yan M, Zhou L, Wen L, Sun R, Mai L. Mesoporous Li3VO4/C submicron-ellipsoids supported on reduced graphene oxide as practical anode for high-power lithium-ion batteries. Adv. Sci. 2015;2(12):1500284.

    Article  Google Scholar 

  36. Shao G, Gan L, Ma Y, Li H, Zhai T. Enhancing the performance of Li3VO4 by combining nanotechnology and surface carbon coating for lithium ion batteries. J. Mater. Chem. A. 2015;3:11253.

    Article  CAS  Google Scholar 

  37. Liang ZY, Zhao YM, Dong YZ, Kuang Q, Lin XH, Liu XD, Yan DL. The low and high temperature electrochemical performance of Li3VO4/C anode material for Li-ion batteries. J Electroanal Chem. 2015;745:1.

    Article  CAS  Google Scholar 

  38. Zhao D, Cao MH. Constructing highly graphitized carbon-wrapped Li3VO4 nanoparticles with hierarchically porous structure as a long life and high capacity anode for lithium-ion batteries. ACS Appl Mater Interfaces. 2015;7:25084.

    Article  CAS  Google Scholar 

  39. Qin RH, Shao GQ, Hou JX, Zheng Z, Zhai TY, Li HQ. One-pot synthesis of Li3VO4@C nanofibers by electrospinning with enhanced electrochemical performance for lithium-ion batteries. Sci Bull. 2017;62:1081.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21571176, 21671077, 21771075 and 21871106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangshe Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, L. & Li, G. Partial surface phase transformation of Li3VO4 that enables superior rate performance and fast lithium-ion storage. Tungsten 1, 276–286 (2019). https://doi.org/10.1007/s42864-019-00028-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-019-00028-3

Keywords

Navigation