Skip to main content
Log in

Raw Materials Used in Traditional Pottery from Northern Morocco: Possible Alternative Material for a Sustainable Future in the Fran Ali Area

  • Original Paper
  • Published:
Clays and Clay Minerals

Abstract

The colluvium and saprolite deposits in the Fran Ali area (Oued Laou, northern Morocco) constitute the main source of raw materials used in traditional pottery. These materials are becoming scarce, however, so alternative materials with the same characteristics are needed; this would ensure the sustainability of pottery activities in the area. The objective of the present study was to examine ten representative samples of clayey materials extracted from the Fran Ali area, i.e. the Ikhadimene, Dar Haddoune, Ihadounene, Aqqbat Ajjoua, and Isalahene sites. The geological materials consist mainly of grayish to brownish phyllites, thin layers of yellowish clay, thicker intervals of reddish-yellow soils ranging in depth from 1 to 4 m, and reddish colluvium soils. The physical properties of these materials were determined using semi-wet sieving and Atterberg limit tests, while chemical, mineralogical, and thermal properties were obtained from the methylene blue test (MBT), the calcimetry test, X-ray fluorescence spectrometry (XRF), X-ray diffraction (XRD), and thermogravimetric and differential thermal (TGA/DTGA) analysis. The results suggest that the soils contain 21–35% clay, 28–34% silt, and 37–52% sand. They are moderately plastic, with methylene blue adsorption capacities ranging from 3 to 7% and minimal CaCO3 carbonate contents (1–4%). Samples are dominated by SiO2 (51–57%), Al2O3 (17–21%), and Fe2O3 (8–10%). Mineralogically, they are composed of illite (19–27%), chlorite (0–22%), kaolinite (5–9%), and quartz (29–32%). Thermal analysis showed a relatively large mass loss of ~10%. The samples are deemed to be moderately plastic. The results indicate that this raw material is acceptable for pottery fabrication, given the small proportion of irregular interlayer content and its average geotechnical properties. In addition, extraction of the colluvium material is not sustainable because of the relative scarcity of the material. Given the mineralogical similarity between the weathered layers (colluvium) and their parent rock (shales), the present results suggest that the latter is a suitable alternative to the former.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, Fatima HILALI, upon request.

References

  • Abatalib, A., Gouzouli, N., Moussa, R., & Saddiqi, O. (2014). Caractérisation des schistes sombres du bassin de Tafilalet. International Journal of Innovation and Scientific Research, 9, 386–398.

    Google Scholar 

  • Aguzzi, C., Cerezo, P., Viseras, C., & Caramella, C. (2007). Use of clays as drug delivery systems: possibilities and limitations. Applied Clay Science, 36(1–3), 22–36. https://doi.org/10.1016/j.clay.2006.06.015

    Article  Google Scholar 

  • Assifaoui, A. (2002). Etude de la stabilité de barbotines à base d'argiles locales: application aux formulations céramiques industrielles. [3ème cycle Université Hassan II Aïn-Chock , Faculté des Sciences de Casablanca, Maroc].

  • Baccour, H., Medhioub, M., Jamoussi, F., & Mhiri, T. (2009). Influence of firing temperature on the ceramic properties of Triassic clays from Tunisia. Journal of Materials Processing Technology, 209(6), 2812–2817. https://doi.org/10.1016/j.jmatprotec.2008.06.055

    Article  Google Scholar 

  • Barrios Neira, J., Martín de la Cruz, J. C., Montealegre Contreras, L. (2012). Estudio de materiales usados en la fabricacion de las ceramicas de Fran Ali (Oued Laou, Marruecos). Boletín de la Sociedad Española de Cerámica y Vidrio, 51(4), 222–230. https://doi.org/10.3989/cyv.322012

  • Bazzana, A., & Montmessin, Y. (1995). Quelques aspects de la céramique médiévale du Maroc du Nord. Actes du 5éme colloque sur la céramique médiévale.

  • Beaudet, G., Maurer, G., & Ruellan, A. (1967). Le quaternaire marocain. observations et hypothèses nouvelles. Revue de Géographie Physique et de Géologie Dynamique, 9, 269–309.

    Google Scholar 

  • Bernal-Casasola, D., Bustamante-Álvarez, M., Díaz, J. J., López-Sáez, J. A., Gutiérrez-Rodríguez, M., Vargas Girón, J. M., Portillo-Sotelo, J. L., Pascual Sánchez, M. Á., & Moujoud, T. (2021). Milling cereals/legumes and stamping bread in Mauretanian Tamuda (Morocco): an interdisciplinary study. African Archaeological Review, 38, 175–209. https://doi.org/10.1007/s10437-020-09413-7

    Article  Google Scholar 

  • Biscaye, P. E. (1965). Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76(7), 803–832. https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2

    Article  Google Scholar 

  • Bockheim, J. G., Gennadiyev, A. N., Hammer, R. D., & Tandarich, J. P. (2005). Historical development of key concepts in pedology. Geoderma, 124(1–2), 23–36. https://doi.org/10.1016/j.geoderma.2004.03.004

    Article  Google Scholar 

  • Bounab, A., El Kharim, Y., El Hamdouni, R., & Hlila, R. (2021). A multidisciplinary approach to study slope instability in the Alboran Sea shoreline: study of the tamegaret deep-seated slow-moving landslide in northern Morocco. Journal of African Earth Sciences, 184, 104–345. https://doi.org/10.1016/j.jafrearsci.2021.104345

    Article  Google Scholar 

  • Buol, S. W., Southard, R. J., Graham, R. C., & McDaniel, P. A. (2011). Soil genesis and classification. John Wiley & Sons.

    Book  Google Scholar 

  • Candy, I., & Black, S. (2009). The timing of quaternary calcrete development in semi-arid Southeast Spain: investigating the role of climate on calcrete genesis. Sedimentary Geology, 218(1–4), 6–15. https://doi.org/10.1016/j.sedgeo.2009.03.005

    Article  Google Scholar 

  • Casagrande, A. (1947). Classification and identification of soils. Transactions of the American Society of Civil Engineers, 113, 901–930. https://doi.org/10.1061/TACEAT.0006109

    Article  Google Scholar 

  • Chalouan, A., & Michard, A. (1985). Age anté-Viséen de la phase varisque paroxysmale dans les nappes ghomarides du Rit interne (Maroc). Sciences Géologiques, Bulletins Et Mémoires, 38(2), 165–174. https://doi.org/10.3406/sgeol.1985.1704

    Article  Google Scholar 

  • Chalouan, A., & Michard, A. (1990). The Ghomarides nappes, Rif coastal range, Morocco: A Variscan chip in the Alpine belt. Tectonics, 9(6), 1565–1583. https://doi.org/10.1029/TC009i006p01565

    Article  Google Scholar 

  • Ciullo, P. A. (1996). Industrial minerals and their uses: a handbook and formulary. William Andrew.

    Google Scholar 

  • Çolak, M., Maggetti, M., & Galetti, G. (2006). Golden mica cooking pottery from Gökeyüp (Manisa), Turkey. Geological Society, 257(1), 141–150. https://doi.org/10.1144/GSL.SP.2006.257.01.11

    Article  Google Scholar 

  • Cook, H., Johnson, P., Matti, J., & Zemmels, I. (1975). IV. methods of sample preparation, and X-ray diffraction data analysis, X-ray mineralogy laboratory. Initial Reports of the Deep Sea Drilling Project, 25, 999–1007.

    Google Scholar 

  • Cultrone, G., Rodriguez-Navarro, C., Sebastian, E., Cazalla, O., & De La Torre, M. J. (2001). Carbonate and silicate phase reactions during ceramic firing. European Journal of Mineralogy, 13(3), 621–634. https://doi.org/10.1127/0935-1221/2001/0013-0621

    Article  Google Scholar 

  • da Silva Favero, J., dos Santos, V., Weiss-Angeli, V., Gomes, L. B., Veras, D. G., Dani, N., Mexias, A. S., & Bergmann, C. P. (2019). Evaluation and characterization of Melo Bentonite clay for cosmetic applications. Applied Clay Science, 175, 40–46. https://doi.org/10.1016/j.clay.2019.04.004

    Article  Google Scholar 

  • Daoudi, L., Hicham, E. E., Latifa, S., Abderrahmane, A., Jamal, B., Mohamed, W., Meriam, E. O., & Nathalie, F. (2014). Characteristics and ceramic properties of clayey materials from Amezmiz region (Western High Atlas, Morocco). Applied Clay Science, 102, 139–147. https://doi.org/10.1016/j.clay.2014.09.029

    Article  Google Scholar 

  • Daoudi, L. (1991). Sédimentation et diagenèse des argiles du jurassique supérieur à l'éocène dans le bassin du Haut Atlas occidental (Maroc). [Doctoral dissertation, Lille 1].

  • das Graças Silva-Valenzuela, M., Chambi-Peralta, M. M., Sayeg, I. J., de Souza Carvalho, F. M., Wang, S. H., & Valenzuela-Díaz, F. R. (2018). Enrichment of clay from Vitoria da Conquista (Brazil) for applications in cosmetics. Applied Clay Science, 155, 111-119. https://doi.org/10.1016/j.clay.2018.01.011

  • Dondi, M., Fabbri, B., & Guarini, G. (1998). Grain-size distribution of Italian raw materials for building clay products: a reappraisal of the Winkler diagram. Clay Minerals, 33(3), 435–442. https://doi.org/10.1180/000985598545732

    Article  Google Scholar 

  • Dumbleton, M., & West, G. (1966). Some factors affecting the relation between the clay minerals in soils and their plasticity. Clay Minerals, 6(3), 179–193. https://doi.org/10.1180/claymin.1966.006.3.05

    Article  Google Scholar 

  • Durand Delga, M., & Kornprobst, J. (1963). Esquisse géologique de la région de Ceuta (Maroc). Bulletin De La Société Géologique De France, 7(7), 1049–1057. https://doi.org/10.2113/gssgfbull.S7-V.7.1049

    Article  Google Scholar 

  • Durand-Delga, M., Hottinger, L., Marçais, J., Mattauer, M., Milliard, Y., & Suter, G. (1961). Données actuelles sur la structure du Rif. En vente à la Société géologique de France.

  • El Gharbaoui, A. (1980). La terre et l'homme dans la péninsule tingitane: étude sur l'homme et le milieu naturel dans le Rif Occidental. Trav. Inst. Sci., Ser. Géol. Géogr.

  • El Ouahabi, M., Daoudi, L., Hatert, F., & Fagel, N. (2015). Modified mineral phases during clay ceramic firing. Clays and Clay Minerals, 63(5), 404–413. https://doi.org/10.1346/CCMN.2015.0630506

    Article  Google Scholar 

  • El Ouahabi, M., El Idrissi, H. E. B., Daoudi, L., El Halim, M., & Fagel, N. (2019). Moroccan clay deposits: physico-chemical properties in view of provenance studies on ancient ceramics. Applied Clay Science, 172, 65–74. https://doi.org/10.1016/j.clay.2019.02.019

    Article  Google Scholar 

  • Federico, E. (2020). Finding a “true Morocco:” How tourists change Moroccan economies, infrastructure and cultures. Independent Study Project (ISP) Collection 3358.

  • Ferrari, S., & Gualtieri, A. (2006). The use of illitic clays in the production of stoneware tile ceramics. Applied Clay Science, 32(1–2), 73–81. https://doi.org/10.1016/j.clay.2005.10.001

    Article  Google Scholar 

  • Fiori, C., Fabbri, B., Donati, G., & Venturi, I. (1989). Mineralogical composition of the clay bodies used in the Italian tile industry. Applied Clay Science, 4(5–6), 461–473. https://doi.org/10.1016/0169-1317(89)90023-9

    Article  Google Scholar 

  • Fletcher, W. J., & Goñi, M. F. S. (2008). Orbital-and sub-orbital-scale climate impacts on vegetation of the western Mediterranean basin over the last 48,000 yr. Quaternary Research, 70(3), 451–464. https://doi.org/10.1016/j.yqres.2008.07.002

    Article  Google Scholar 

  • Gaeta, M., Aldega, L., Astolfi, M. L., Bonechi, B., Marra, F., Pacheco, P., Perinelli, C., & Tiberi, F. (2022). Soils developed on the si-poor, alkali-rich pyroclastic rocks of the Colli Albani volcanic district (Central Italy): the effect of leucite, clinopyroxene and phlogopite on the base cations mobility. Applied Geochemistry, 145, 105430. https://doi.org/10.1016/j.apgeochem.2022.105430

    Article  Google Scholar 

  • Gliozzo, E., D’Aco, D., Memmi Turbanti, I., Galli, A., Martini, M., & Sibilia, E. (2009). Common ware production at Thamusida: dating and characterisation of Roman and Islamic pottery. Archaeological and Anthropological Sciences, 1, 77–85. https://doi.org/10.1007/s12520-009-0006-3

    Article  Google Scholar 

  • Graves, M. S. (2007). ‘A Certain Barbaric Originality’: Moroccan pottery as viewed by British travel writers of the nineteenth century. The Journal of North African Studies, 12(4), 501–516. https://doi.org/10.1080/13629380701419608

    Article  Google Scholar 

  • Haddaji, Y., Majdoubi, H., Mansouri, S., Alomayri, T. S., Allaoui, D., Manoun, B., Oumam, M., & Hannache, H. (2022). Microstructure and flexural performances of glass fibers reinforced phosphate sludge based geopolymers at elevated temperatures. Case Studies in Construction Materials, 16, e00928. https://doi.org/10.1016/j.cscm.2022.e00928

    Article  Google Scholar 

  • Hajjaji, W., Hachani, M., Moussi, B., Jeridi, K., Medhioub, M., López-Galindo, A., Rocha, F., Labrincha, J., & Jamoussi, F. (2010). Mineralogy and plasticity in clay sediments from North-East Tunisia. Journal of African Earth Sciences, 57(1–2), 41–46. https://doi.org/10.1016/j.jafrearsci.2009.07.007

    Article  Google Scholar 

  • Hénin, S., Rautureau, M., & Caillère, S. (1982). Minéralogie des argiles. Masson Paris.

    Google Scholar 

  • Hole, F. D., & Campbell, J. B. (1985). Soil landscape analysis. Government Institutes.

    Google Scholar 

  • Holtz, R. D., Kovacs, W. D., & Sheahan, T. C. (1981). An introduction to geotechnical engineering. Prentice-Hall Englewood Cliffs.

    Google Scholar 

  • Jump, H. B. (2003). The Impact of Tourism on the Traditional Potters’ Communities in the Maghreb Country of Morocco. An Ethnological Study. Area Studies, Business and Culture: Results of the Bavarian Research Network Forarea, 12, 70.

    Google Scholar 

  • Kornmann, M. (2005). Matériaux de construction en terre cuite: Fabrication et propriétés.

  • León, R. A. G., Solano, E. F., & Peñaloza, C. A. (2018). Caracterización térmica de mezclas de arcillas utilizadas en la fabricación de productos de mampostería para la construcción. Revista Colombiana de Tecnologías de Avanzada, 1(31), 22–30. https://doi.org/10.24054/16927257.v31.n31.2018.2760

    Article  Google Scholar 

  • Maass-Lindemann, G. (1992). A comparison of the phoenician pottery of lixus with the west phoenician pottery of Spain. Publications De L’école Française De Rome, 166(1), 175–180.

    Google Scholar 

  • Majdoubi, H., Haddaji, Y., Mansouri, S., Alaoui, D., Tamraoui, Y., Semlal, N., Oumam, M., Manoun, B., & Hannache, H. (2021). Thermal, mechanical and microstructural properties of acidic geopolymer based on moroccan kaolinitic clay. Journal of Building Engineering, 35, 102078. https://doi.org/10.1016/j.jobe.2020.102078

    Article  Google Scholar 

  • Maritan, L., Nodari, L., Mazzoli, C., Milano, A., & Russo, U. (2006). Influence of firing conditions on ceramic products: experimental study on clay rich in organic matter. Applied Clay Science, 31(1–2), 1–15. https://doi.org/10.1016/j.clay.2005.08.007

    Article  Google Scholar 

  • Marrone, S., Monie, P., Rossetti, F., Aldega, L., Bouybaouene, M., Charpentier, D., Lucci, F., Phillips, D., Theye, T., & Zaghloul, M. N. (2021). Timing of Alpine orogeny and postorogenic extension in the Alboran Domain, inner Rif chain, Morocco. Tectonics, 40(7), e2021TC006707. https://doi.org/10.1029/2021TC006707

    Article  Google Scholar 

  • Martínez Sánchez, R. M., Rodríguez, J. C. V., Caro, J. G., Pardo-Gordó, S., Pérez-Jordà, G., & Peña-Chocarro, L. (2021). Reflections on the other side. A Southern Iberia origin for the first pottery production of Northern Morocco. Open Archaeology, 7(1), 1054–1065. https://doi.org/10.1515/opar-2020-0174

    Article  Google Scholar 

  • Martínez-Sánchez, R. M., Vera-Rodríguez, J. C., Pérez-Jordà, G., Pena-Chocarro, L., & Bokbot, Y. (2018). The beginning of the Neolithic in northwestern Morocco. Quaternary International, 470, 485–496. https://doi.org/10.1016/j.quaint.2017.05.052

    Article  Google Scholar 

  • Moore, F. (1963). Two instruments for studying the plasticity of clays. Journal of Scientific Instruments, 40(5), 228. https://doi.org/10.1088/0950-7671/40/5/314

    Article  Google Scholar 

  • Moore, D. M., & Reynolds, R. C. (1989). X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press.

    Google Scholar 

  • Moussout, H., Ahlafi, H., Aazza, M., Chfaira, R., & Mounir, C. (2020). Interfacial electrochemical properties of natural Moroccan Ghassoul (stevensite) clay in aqueous suspension. Heliyon, 6(3), e03634. https://doi.org/10.1016/j.heliyon.2020.e03634

    Article  Google Scholar 

  • Murray, H. H. (2006). Applied clay mineralogy: Occurrences, processing and applications of kaolins, bentonites, palygorskitesepiolite, and common clays. Elsevier.

    Google Scholar 

  • Murthy, V. (2002). Geotechnical engineering: Principles and practices of soil mechanics and foundation engineering. CRC Press.

    Book  Google Scholar 

  • Nahdi, K., Gasmi, N., Ayedi, M. T., & Kbir-Ariguib, N. (2001). Characterization and thermal behavior of jebel ressas clay. Journal De La Société Chimique De Tunisie, 4(9), 1125–1134.

    Google Scholar 

  • Negro, F., Beyssac, O., Goffé, B., Saddiqi, O., & Bouybaouene, M. (2006). Thermal structure of the Alboran Domain in the Rif (northern Morocco) and the Western Betics (Southern Spain). Constraints from Raman spectroscopy of carbonaceous material. Journal of metamorphic Geology, 24(4), 309–327. https://doi.org/10.1111/j.1525-1314.2006.00639.x

    Article  Google Scholar 

  • Nekhlaoui, S., Essabir, H., Bensalah, M., Fassi-Fehri, O., Qaiss, A., & Bouhfid, R. (2014). Fracture study of the composite using essential work of fracture method: PP–SEBS–g–MA/E1 clay. Materials & Design, 53, 741–748. https://doi.org/10.1016/j.matdes.2013.07.089

    Article  Google Scholar 

  • Pérez-Folgado, M., Sierro, F. J., Flores, J. A., Grimalt, J. O., & Zahn, R. (2004). Paleoclimatic variations in foraminifer assemblages from the Alboran Sea (Western Mediterranean) during the last 150 ka in ODP site 977. Marine Geology, 212(1–4), 113–131. https://doi.org/10.1016/j.margeo.2004.08.002

    Article  Google Scholar 

  • Picon, M. (1995). Pour une relecture de la céramique marocaine: caractéristiques des argiles et des produits, techniques de fabrication, facteurs économiques et sociaux. Ethno-archéologie méditerranéenne, 54, 141–158.

    Google Scholar 

  • Reed, J. S. (1995). Principles of ceramics processing. John Wiley & Sons, Inc. (US), 152.

  • Rodríguez-Ruiz, M. D., Abad, I., & Bentabol, M. J. (2019). Permo-triassic clastic rocks from the Ghomaride complex and Federico units (Rif Cordillera, N Morocco): an example of diagenetic-metamorphic transition. Minerals, 9(12), 738. https://doi.org/10.3390/min9120738

    Article  Google Scholar 

  • Rognon, P. (1987). Late quaternary climatic reconstruction for the Maghreb (North Africa). Palaeogeography, Palaeoclimatology, Palaeoecology, 58(1–2), 11–34. https://doi.org/10.1016/0031-0182(87)90003-4

    Article  Google Scholar 

  • Ross, G., & Kodama, H. (1976). Experimental alteration of a chlorite into a regularly interstratified chlorite-vermiculite by chemical oxidation. Clays and Clay Minerals, 24, 183–190. https://doi.org/10.1346/ccmn.1976.0240406

    Article  Google Scholar 

  • Ruellan, A. (1969). Quelques réflexions sur le rôle des sols dans l’interprétation des variations bioclimatiques du Pléistocène marocain. Revue de Géographie du Maroc, 15, 129-140.

  • Sancho, C., Arenas, C., Vázquez-Urbez, M., Pardo, G., Lozano, M. V., Peña-Monné, J. L., Hellstrom, J., Ortiz, J. E., Osácar, M. C., & Auqué, L. (2015). Climatic implications of the quaternary fluvial tufa record in the NE Iberian Peninsula over the last 500 ka. Quaternary Research, 84(3), 398–414. https://doi.org/10.1016/j.yqres.2015.08.003

    Article  Google Scholar 

  • Shepard, F. P. (1954). Nomenclature based on sand-silt-clay ratios. Journal of Sedimentary Research, 24(3), 151–158. https://doi.org/10.1306/D4269774-2B26-11D7-8648000102C1865D

    Article  Google Scholar 

  • Strazzera, B., Dondi, M., & Marsigli, M. (1997). Composition and ceramic properties of tertiary clays from southern Sardinia (Italy). Applied Clay Science, 12(3), 247–266. https://doi.org/10.1016/S0169-1317(97)00010-0

    Article  Google Scholar 

  • Velde, B. (1992). Origin of clays: Introduction to Clay MineralsChemistry, origins, uses and environmental significance (p. 198). Springer.

    Google Scholar 

  • Viseras, C., & Lopez-Galindo, A. (1999). Pharmaceutical applications of some Spanish clays (sepiolite, palygorskite, bentonite): some preformulation studies. Applied Clay Science, 14(1–3), 69–82. https://doi.org/10.1016/S0169-1317(98)00050-7

    Article  Google Scholar 

  • Wan, Y., Kwong, J., Brandes, H. G., & Jones, R. (2002). Influence of amorphous clay-size materials on soil plasticity and shrink-swell behavior. Journal of Geotechnical Geoenvironmental Engineering, 128(12), 1026–1031. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:12(1026)

    Article  Google Scholar 

  • Wetshondo Osomba, D. (2012). Caractérisation et valorisation des matériaux argileux de la Province de Kinshasa (RD Congo). [Doct. sc. ingé. , Liège].

  • Williams, L. B., & Haydel, S. E. (2010). Evaluation of the medicinal use of clay minerals as antibacterial agents. International Geology Review, 52(7–8), 745–770. https://doi.org/10.1080/00206811003679737

    Article  Google Scholar 

  • Wilmsen, E. N., Griffiths, A., Thebe, P., Killick, D., & Molatlhegi, G. (2016). Moijabana Rocks-Pilikwe pots: the acceleration of clay formation by potters employing simple mechanical means. Ethnoarchaeology, 8(2), 137–157. https://doi.org/10.1080/19442890.2016.1215885

    Article  Google Scholar 

  • Yeskis, D., Koster van Groos, A., & Guggenheim, S. (1985). The dehydroxylation of kaolinite. American Mineralogist, 70(1–2), 159–164.

    Google Scholar 

Download references

Acknowledgements

The authors thank the people of Jbala in the Fran Ali region for helping them to understand the various production steps in traditional pottery-making.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Hilali.

Ethics declarations

Conflicts of Interest

The authors declare that there is no conflict of interest.

Additional information

Associate Editor: Chun-Hui Zhou

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hilali, F., El Kharim, Y., Hilali, H. et al. Raw Materials Used in Traditional Pottery from Northern Morocco: Possible Alternative Material for a Sustainable Future in the Fran Ali Area. Clays Clay Miner. 71, 616–636 (2023). https://doi.org/10.1007/s42860-023-00261-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-023-00261-5

Keywords

Navigation