Skip to main content

Advertisement

Log in

Mineralogical and Elemental Trends in Regolith on Historically Managed Sites in the southeastern United States Piedmont

  • Original Paper
  • Published:
Clays and Clay Minerals

Abstract

The deep regolith of the southeastern United States has undergone rapid erosion in the last two centuries due to intensive agricultural practices, which has altered the landscape and its inherent fertility. Parent material, landscape position, and land use are important factors in controlling the mineral and elemental composition of soil profiles. Independent quantitative X-ray diffraction (QXRD) and whole-rock chemical analysis of eight weathering profiles agreed well and allow mineral reaction pathways to be constrained as particles are conveyed in the subsurface. QXRD analysis of saprolite, argillic, and soil A-horizons in the profiles highlights the imprint of bedrock on the regolith, which includes Neoproterozoic meta-tonalitic to meta-granodioritic and Paleozoic meta-granitic to biotite- and amphibolite-gneissic lithologies. Also, aeolian input slightly influenced A-horizon composition. The clay mineral assemblage is dominated by kaolinite, but profiles differ in the amount of interstratified clay minerals, halloysite, hematite, goethite, and gibbsite. Rare-earth element totals vary between 30 and 1048 ppm and are generally correlated positively with clay and clay mineral content. Eu and Ce anomalies reflect parent rocks and subsequent hydrolysis and redox history, with trends depending upon landscape position and clay content in the weathering profile. Weathering profiles on a high-order interfluve and those that were actively cultivated have thick argillic horizons (as defined by clay mineral abundance) and are depleted in alkali and alkaline-earth elements. Profiles proximally developed on old-field pine and never-cultivated hardwood forest land do not show large differences in mineral composition trends, whereas profiles on old-field sites with ongoing cultivation exhibit assemblages enriched in clay minerals and (oxyhydr)oxides. Old-field pine sites that were historically eroded by previous cultivation tend to have shallower and thinner argillic horizons, which may well impact critical-zone processes involving gas and water fluxes. This study highlights that mineral compositions of deep regolith, saprolite, and shallow soil horizons are dependent on local geomorphology (i.e. watershed- and hillshed-orders). Quantifying soil and regolith compositional trends across the landscape is a prerequisite for determining rates of chemical and physical erosion on human and geologic time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

https://czo-archive.criticalzone.org/national/.

References

  • Anders, E., & Grevesse, N. (1989). Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53, 197–213.

    Article  Google Scholar 

  • Austin, J. C., & Schroeder, P. A. (2014). Assessment of pedogenic gibbsite as a paleo-PCO2 proxy using a modern Ultisol. Clays and Clay Minerals, 62(5), 235–266.

    Google Scholar 

  • Austin, J. C., Richter, D. D., & Schroeder, P. A. (2020). Quantification of interstratified clays in multiple saturation states using NEWMOD2: Implications for the potassium uplift hypothesis in the SE United States. Clays and Clay Minerals., 68(1), 67–80. https://doi.org/10.1007/s42860-019-00060

    Article  Google Scholar 

  • Bacon, A.R. (2014) Pedogenesis and Anthropedogenesis on the southern Piedmont. Ph.D. Dissertation 3617449, Advisor, D.D. Richter, University program in Ecology Duke University. pp. 119.

  • Bacon, A. R., Richter, D. D., Bierman, P. R., & Rood, D. H. (2012). Coupling meteoric 10Be with pedogenic losses of 9Be to improve soil residence time estimates on an ancient north American interfluve. Geology, 40, 847–850. https://doi.org/10.1130/G33449.1

    Article  Google Scholar 

  • Banwart, S., Menon, M., Bernasconi, S. M., Bloem, J., Blum, W. E. H., de Souza, D. M., Davidsdotir, B., et al. (2012). Soil processes and functions across an international network of critical zone observatories; Introduction to experimental methods and initial results. Comptes Rendus Geoscience, 344(11–12), 758–772. https://doi.org/10.1016/j.crte.2012.10.007

    Article  Google Scholar 

  • Bau, M. (1999). Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-ho fractionation, and lanthanide tetrad effect. Geochimica et Cosmochimica Acta, 63, 67–77.

    Article  Google Scholar 

  • Bau, M., Koschinsky, A., Dulski, P., & Hein, J. R. (1996). Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochimica et Cosmochimica Acta, 60, 1709–1725.

    Article  Google Scholar 

  • Bern, C. R., Yesavage, T., & Foley, N. K. (2017). Ion-adsorption REEs in regolith of the Liberty Hill pluton, South Carolina, USA: An effect of hydrothermal alteration. Journal of Geochemical Exploration, 172, 29–33.

    Article  Google Scholar 

  • Berner, R. A. (2004). The Phanerozoic carbon cycle: CO2 and O2. Oxford University Press.

    Book  Google Scholar 

  • Billings, S. A., & Sullivan, P. L. (2020). Working across scales to project soil biogeochemical responses to climate. In Yang, Y., Keiluweit, M., Senesi, N., & Xing, B. (Eds.), Multi-Scale Biogeochemical Processes in Soil Ecosystems: Critical Reactions and Resilience to Climate Changes (pp. 1–12). Vol. 5 in IUPAC Series on Biophysico-Chemical Processes in Environmental Systems, John Wiley & Sons.

  • Brantley, S. L., Lebedeva, M. I., Balashov, V. N., Singha, K., Sullivan, P. L., & Stinchcomb, G. (2017). Toward a conceptual model relating chemical reaction fronts to water flow paths in hills. Geomorphology, 277, 100–117.

    Article  Google Scholar 

  • Braun, J.-J., Pagel, M., Muller, J.-P., Bilong, P., Michard, A., & Guillet, B. (1990). Cerium anomalies in lateritic profiles. Geochimica et Cosmochimica Acta, 54, 781–795.

    Article  Google Scholar 

  • Brecheisen, Z. S., Cook, C. W., Heine, P. R., & Richter, D. D. (2019a). Micro-topographic roughness analysis (MTRA) highlights minimally eroded terrain in a landscape severely impacted by historic agriculture. Remote Sensing of Environment, 222, 78–89.

    Article  Google Scholar 

  • Brecheisen, Z. S., Cook, C. W., Heine, P. R., Ryang, J., & Richter, D. D. (2019b). Development and Deployment of a Field-Portable Soil O2 and CO2 Gas Analyzer and Sampler. PLoS One, 14(8), e0220176. https://doi.org/10.1371/journal.pone.0220176

  • Brecheisen, Z. S., Richter, D. D., Moon, S., & Halpin, P. N. (2021). Quantitative analysis of hillshed geomorphology and critical zone function: Raising the hillshed to watershed status. GSA Bulletin. https://doi.org/10.1130/B35724.1

  • Brimhall, G. H., & Dietrich, W. E. (1987). Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis. Geochimica et Cosmochimica Acta, 51(3), 567–587.

    Article  Google Scholar 

  • Calabrese, S., Richter, D. D., & Porporato, A. (2018). The formation of clay-enriched horizons by lessivage. Geophysical Research Letters, 45(15), 7588–7595.

    Article  Google Scholar 

  • Cannida, T. (2018) Petrography of the gneisses from the Mary Lou quarry, Clinton, SC: Implications for quantifying mineral compositions in the critical zone. University of Georgia, Athens, GA. USA. CURO Symposium. Program and Abstracts. p 58, http://curo.uga.edu/symposium/BOAs/CURO2018BOA.pdf

  • Cecil, C. B. (2003). The concept of autocyclic and Allocyclic controls on sedimentation and stratigraphy, emphasizing the climatic variable. Special Publication - Society for Sedimentary Geology, 77(October), 13–20.

    Google Scholar 

  • Chen, C., Barcellos, D., Richter, D. D., Schroeder, P. A., & Thompson, A. (2019). Redoximorphic Bt horizons of the Calhoun CZO soils exhibit depth-dependent iron-oxide crystallinity. Journal of Soil Sedimentary, 19, 785–797.

    Article  Google Scholar 

  • Churchman, G. J. (1990). Relevance of different intercalation tests for distinguishing halloysite from kaolinite in soils. Clays and Clay Minerals, 38(6), 591–599.

    Article  Google Scholar 

  • Cook, C.W. (2019). CCZO -- photographic imagery, soil survey -- soil pit profiles -- Calhoun CZO -- (2016-2016), HydroShare, http://www.hydroshare.org/resource/ae1b338cc7a641f68fd5c4f85dba97a1

  • Coughlan, M. R., & Nelson, D. R. (2018). Influences of native American land use on the colonial euro-American settlement of the South Carolina Piedmont. PLoS ONE, 13(3), e0195036.

    Article  Google Scholar 

  • Coughlan, M. R., Nelson, D. R., Lonneman, M., & Block, A. E. (2017). Historical land use dynamics in the highly degraded landscape of the Calhoun critical zone observatory. Land, 6(2), 32.

    Article  Google Scholar 

  • Dennis, A. J., & Wright, J. E. (1997). The Carolina terrane in northwestern South Carolina, USA: Late Precambrian-Cambrian deformation and metamorphism in a peri-Gondwanan oceanic arc. Tectonics, 16(3), 460–473.

    Article  Google Scholar 

  • Dietel, J., Gröger-Trampe, J., Bertmer, M. S., Kaufhold, K. U., & Dohrmann, R. (2019). Crystal structure model development for soil clay minerals–I. Hydroxy-interlayered smectite (HIS) synthesized from bentonite. A multi-analytical study. Geoderma, 347, 135–149.

    Article  Google Scholar 

  • Ferreira, E. P., Guerra, A. A. R., & de Azevedo, C. (2019). Rare earth elements in gneiss regoliths in southern Minas Gerais, Brazil. Scientia Agricola, 78(3). https://doi.org/10.1590/1678-992X-2019-0190

  • Hack, J. T. (1975). Dynamic equilibrium and landscape evolution. Theories of Landform Development, 1, 87–102.

    Google Scholar 

  • Hauser, E., Richter, D. D., Markewitz, D., Brecheisen, Z., & Billings, S. A. (2020). Persistent anthropogenic legacies structure depth dependence of regenerating rooting systems and their functions. Biogeochemistry, 147, 259–275. https://doi.org/10.1007/s10533-020-00641-2

    Article  Google Scholar 

  • Hochella Jr., M. F., Mogk, D., Ranville, J. I. A., Luther, G., Marr, L., McGrail, E. P., Murayama, M., Qafoku, N., Rosso, K., Sahai, N., Schroeder, P. A., Vikesland, P., Westerhoff, P., & Yang, Y. (2019). Natural, incidental, & engineered nanomaterials and their impacts on the earth system. Science. https://doi.org/10.1126/science.aau8299

  • Holbrook, W. S., Marcon, V., Bacon, A. R., Brantley, S. L., Carr, B. J., Flinchum, B. A., Richter, D. D., & Riebe, C. S. (2019). Links between physical and chemical weathering inferred from a 65-m-deep borehole through Earth’s critical zone. Scientific Reports, 9, 4495.

    Article  Google Scholar 

  • Horkowitiz, P. (1984). Geology of the Philson crossroads 7.5' quadrangle, South Carolina - the nature of the boundary separating the inner Piedmont from the Carolina-Avalon terrane in central northwestern South Carolina (M.S. thesis). University of South Carolina, 100p.

  • Hu, Z., Haneklaus, S., Sparovek, G., & Schnug, E. (2006) Rare earth elements in soils. Communications in Soil Science and Plant Analysis, 37(9–10), 1381–1420.

  • Huebner, M. T., Hatcher, R. D., & Merschat, A. J. (2017). Confirmation of the southwest continuation of the Cat Square terrane, southern Appalachian Inner Piedmont, with implications for middle Paleozoic collisional orogenesis. American Journal of Science, 317(2), 95–176.

    Article  Google Scholar 

  • Hurst, V. J., Schroeder, P. A., & Styron, R. W. (1997). Accurate quantification of quartz and other phases by powder X-ray diffractometry. Analytica Chimica Acta, 337, 233–252.

    Article  Google Scholar 

  • Jobbágy, G., & Jackson, B. (2004). The uplift of soil nutrients by plants: Biogeochemical consequences across scales. Ecology, 85(9), 2380–2389.

    Article  Google Scholar 

  • Jordan, B. (2020) Geology of the Calhoun Critical Zone Observatory. M.S. Thesis, University of Georgia, Department of Geology, Athens, GA. 1 Map, 104 p. https://esploro.libs.uga.edu/esploro/outputs/graduate/Geology-of-the-Calhoun-Critical-Zone-Observatory/9949348149502959.

  • Laveuf, C., & Cornu, S. (2009). A review on the potentiality of rare earth elements to trace pedogenetic processes. Geoderma, 154, 1–12.

    Article  Google Scholar 

  • Lebedeva, M. I., & Brantley, S. L. (2013). Exploring geochemical controls on weathering and erosion of convex hillslopes: Beyond the empirical regolith production function. Earth Surface Processes and Landforms, 38, 1793–1807.

    Article  Google Scholar 

  • Li, L., Maher, K., Navarre-Sitchler, A., Druhan, J., Meile, C., Lawrence, C., Moore, J., Perdrial, J., Sullivan, P., & Thompson, A. (2017). Expanding the role of reactive transport models in critical zone processes. Earth-Science Reviews, 165, 280–301.

    Article  Google Scholar 

  • Li, M. Y. H., & Zhou, M. F. (2020). The role of clay minerals in formation of regolith-hosted heavy rare earth element deposits. American Mineralogist, 105, 92–108.

    Article  Google Scholar 

  • Maleke, M., Valverde, A., Gomez-Arias, A., Cason, E. D., Vermeulen, J. G., Coetsee-Hugo, L., Swart, H., van Heerden, E., & Castillo, J. (2019). Anaerobic reduction of europium by a clostridium strain as a strategy for rare earth biorecovery. Scientific Reports, 9(1), 14339. https://doi.org/10.1038/s41598-019-50179-z

    Article  Google Scholar 

  • Markewich, H. W., & Markewich, W. (1994) An overview of Pleistocene and Holocene inland dunes in Georgia and the Carolinas: Morphology, distribution, age, and paleoclimate. U.S. Geological Survey bulletin: 2069.

  • Moore, D. M., & Reynolds, R. C. (1997). X-ray diffraction and the identification and analysis of clay minerals. Oxford [England]. Oxford University Press.

  • Moravec, B. G., Keifer, V., Root, R. A., White, A. M., Wang, Y., Olshansky, Y., McIntosh, J., & Chorover, J. (2021). Experimental weathering of a Volcaniclastic critical zone profile: Key role of colloidal constituents in aqueous geochemical response. Chemical Geology, 559. https://doi.org/10.1016/j.chemgeo.2020.119886

  • Nesbitt, H., & Young, G. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717. https://doi.org/10.1038/299715a0

    Article  Google Scholar 

  • Price, J. R., & Velbel, M. A. (2003). Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology, 202(3–4), 397–416.

  • Raven, M. D., & Self, P. G. (2017). Outcomes of 12 years of the Reynolds cup quantitative mineral analysis round Robin. Clays and Clay Minerals, 65, 122–134. https://doi.org/10.1346/CCMN.2017.064054

    Article  Google Scholar 

  • Richter, D. D., & Markewitz, D. (2001). Understanding soil change: Soil sustainability over millennia, centuries, and decades. Cambridge University Press.

  • Richter, D. D., Eppes, M. C., Austin, J. C., Bacon, A. R., Billings, S. A., Brecheisen, Z., Ferguson, T. A., Markewitz, D., Pachon, J., Schroeder, P. A., & Wade, A. M. (2020). Soil production and the soil geomorphology legacy of grove Karl Gilbert. Soil Science Society of America Journal, 84(1), 1–20.

    Article  Google Scholar 

  • Rietveld, H. (1967). Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr., 22, 151.

    Article  Google Scholar 

  • Ryland, R. C., Thompson, A., Sutter, L. A., & Markewitz, D. (2020). Mapping depth to the argillic horizon on historically farmed soil currently under forests. Geoderma, (369), 114291. https://doi.org/10.1016/j.geoderma.2020.114291

  • Sanders, S.C. (2018) The fate of degraded biotites in the deep critical zone: Implications for the K-uplift hypothesis. University of Georgia Center for undergraduate research opportunities symposium. April 9-10, Athens, GA. Abstract with programs. p. 169 http://curo.uga.edu/symposium/BOAs/CURO2018BOA.pdf

  • Schroeder, P. A. (2018). Clays in the critical zone. Cambridge University press (online ISBN: 9781316480083).

  • Schroeder, P. A., Kim, J. G., & Melear, N. D. (1997). Mineralogical and textural criteria for recognizing remnant Cenozoic deposits on the Piedmont: Evidence from Sparta & Greene County, Georgia, U.S.A. Sedimentary Geology, 108, 195–206.

    Article  Google Scholar 

  • Schroeder, P. A., Richter, D. D., & Sanders, S. C. (2020) The fate of degraded micas in the deep critical zone: Pathways to the formation of kaolinite and other secondary minerals in the S.E. US Piedmont. Geological Society of America meeting, northeastern/southeastern section, Reston. VA.

  • St. Clair, J., Moon, S., Holbrook, W. S., Perron, J. T., Riebe, C. S., Martel, S. J., Carr, B., Harman, C., Singha, K., & Richter, D. D. (2019). Geophysical imaging reveals topographic stress control of bedrock weathering. Science, 350(6260), 534–538.

    Article  Google Scholar 

  • Sullivan, P. L., Li, L., Goddéris, Y., & Brantley, S. L. (2020). Poised to Hindcast and Earthcast the effect of Climae on the critical zone: Shale Hills as a model. Geophysical Monograph, 250, 207–204.

    Article  Google Scholar 

  • Thompson, A., Amistadi, M. K., Chadwick, O. A., & Chorover, J. (2013). Fractionation of yttrium and holmium during basaltic soil weathering. Geochimica et Cosmochimica Acta, 119, 18–30.

    Article  Google Scholar 

  • Ufer, K., Roth, G., Kleeberg, R., Stanjek, H., Dohrmann, R., & Bergmann, J. (2004). Description of X-ray powder pattern of turbostratically disordered layer structures with a Rietveld compatible approach. Zeitschrift für Kristallographie, 219, 519–527.

    Article  Google Scholar 

  • Ufer, K., Stanjek, H., Roth, G., Dohrmann, R., Kleeberg, R., & Kaufhold, S. (2008). Quantitative phase analysis of bentonites by the Rietveld method. Clays & Clay Minerals, 56, 272–282.

    Article  Google Scholar 

  • Vázquez-Ortega, A., Perdrial, J., Harpold, A., Zapata-Ríos, X., Rasmussen, C., McIntosh, J., Schaap, M., Pelletier, J. D., Brooks, P. D., Amistadi, M. K., & Chorover, J. (2015). Rare earth elements as reactive tracers of biogeochemical weathering in forested rhyolitic terrain. Chemical Geology, 391, 19–32.

    Article  Google Scholar 

  • Wymore, A., West, N., Maher, K., Sullivan, P., Harpold, A., Karwan, D., Marshall, J., Perdrial, J., Rempe, D., & Ma, L. (2017). Growing new generations of international critical zone scientists. Earth Surface Processes and Landforms. https://doi.org/10.1002/esp.4196

Download references

Acknowledgments

This work was supported by NSF grant EAR-GEO-1331846. Thanks are given to the entire team of Calzoners who can be recognized at https://czo-archive.criticalzone.org/calhoun/people/. The authors thank Will Cook for photographing the pits, data archiving, and management of the 2016 “Big Dig” program. USDA personnel assisted with the soil descriptions. Appreciation is also extended to Bruno Lanson, Marion Wampler, two anonymous reviewers, and editors who provided valuable feedback.

Funding

This work was supported by NSF grant EAR-GEO-1331846.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this effort, including field work, data analysis, and writing.

Corresponding author

Correspondence to Paul A. Schroeder.

Ethics declarations

Ethics Approval and Consent

N/A

Consent for Publication

N/A

Competing Interests

The authors declare that they have no conflicts of interest.

Supplementary Information

ESM 1

(PNG 607 kb)

High Resolution image (TIF 74882 kb)

ESM 2

(PNG 671 kb)

High Resolution image (TIF 76393 kb)

ESM 3

(PNG 640 kb)

High Resolution image (TIF 73540 kb)

ESM 4

(PNG 739 kb)

High Resolution image (TIF 72983 kb)

ESM 5

(PNG 738 kb)

High Resolution image (TIF 73960 kb)

ESM 6

(PNG 663 kb)

High Resolution image (TIF 72725 kb)

ESM 7

(PNG 756 kb)

High Resolution image (TIF 73158 kb)

ESM 8

(PNG 689 kb)

High Resolution image (TIF 74173 kb)

ESM 9

(PNG 685 kb)

High Resolution image (TIF 74180 kb)

ESM 10

(PNG 693 kb)

High Resolution image (TIF 73718 kb)

ESM 11

(PDF 247 kb)

ESM 12

(PDF 616 kb)

ESM 13

(PDF 620 kb)

ESM 14

(PDF 654 kb)

ESM 15

(PDF 653 kb)

ESM 16

(PDF 550 kb)

ESM 17

(PDF 628 kb)

ESM 18

(PDF 815 kb)

ESM 19

(PDF 1114 kb)

ESM 20

(PDF 1226 kb)

ESM 21

(PDF 1045 kb)

ESM 22

(PDF 1122 kb)

ESM 23

(PDF 1090 kb)

ESM 24

(PDF 399 kb)

ESM 25

(PDF 2182 kb)

ESM 26

(PDF 2190 kb)

ESM 27

(PDF 7572 kb)

ESM 28

(XLSX 1405 kb)

ESM 29

(XLSX 1430 kb)

ESM 30

(XLSX 40 kb)

ESM 31

(XLSX 17 kb)

ESM 32

(XLSX 1405 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schroeder, P.A., Austin, J.C., Thompson, A. et al. Mineralogical and Elemental Trends in Regolith on Historically Managed Sites in the southeastern United States Piedmont. Clays Clay Miner. 70, 539–554 (2022). https://doi.org/10.1007/s42860-022-00202-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-022-00202-8

Keywords

Navigation