Skip to main content
Log in

Efficacy of Two Texas Bentonites in Binding Aflatoxin B1 and in Reducing Aflatoxicosis in Broilers

  • Original Paper
  • Published:
Clays and Clay Minerals

Abstract

The incorporation of bentonites in aflatoxin-contaminated animal feeds to remedy aflatoxicosis has been tested widely in animal trials. Yet, a large variation in efficacy among samples has been observed which has been attributed to variations in the properties of the clay mineral adsorbents. The objectives of the current study were: (1) to evaluate the mineral and chemical composition of two selected bentonites to find minerals or elements which are potentially of concern; (2) to characterize the aflatoxin B1 (AfB1) adsorption (selectivity, capacity, reversibility, and interlayer accessibility) by the bentonites; and (3) to evaluate the safety and efficacy of selected clays as amendments of aflatoxin-contaminated feed for broiler chickens. The mineral, chemical, and exchange cation composition of the clays were analyzed, and they appeared to be safe for use in feed. The bentonites and their fractions showed that adsorption capacities range from 0.48 to 0.97 mol/kg. The interlayer spaces of both montmorillonites were accessible by AfB1, and the adsorption was irreversible. Three-day old broiler chickens were given clean and high-aflatoxin-concentration (1400 mg/kg) diets with and without the presence of the two bentonites. After three weeks the chickens were sacrificed and biomarkers were evaluated. The presence of aflatoxins reduced the body weight by 58% and resulted in a 25% mortality rate. Adding bentonites 1TX and 4TX increased the body weight of the chickens by 14 and 23%, respectively, but did not improve the mortality rates. The results suggested that selected bentonites could effectively sequester aflatoxins in vivo but did not eliminate the total toxicity present in highly contaminated poultry feed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  • Aletor, V. A., Kasali, O. B., & Fetuga, B. L. (1981). Effects of sublethal levels of dietary aflatoxins in broiler chickens. Zentralblatt fuer Veterinaermedizin. Reihe A, 28(9-10), 774–781.

    Article  Google Scholar 

  • Bailey, C. A., Latimer, G. W., Barr, A. C., Wigle, W. L., Haq, A. U., Balthrop, J. E., & Kubena, L. F. (2006). Efficacy of montmorillonite clay (NovaSil PLUS) for protecting full-term broilers from aflatoxicosis. Journal of Applied Poultry Research, 15(2), 198–206.

    Article  Google Scholar 

  • Bailey, R. H., Kubena, L. F., Harvey, R. B., Buckley, S. A., & Rottinghaus, G. E. (1998). Efficacy of various inorganic sorbents to reduce the toxicity of aflatoxin and T-2 toxin in broiler chickens. Poultry Science, 77(11), 1623–1630.

    Article  Google Scholar 

  • Barrientos Velazquez, A. L. (2011). Texas Bentonites as Amendments of Aflatoxin-Contaminated Poultry Feed. Master’s thesis. Texas A&M University, Texas, USA.

  • Barrientos-Velazquez, A. L., & Deng, Y. (2020). Reducing competition of pepsin in aflatoxin adsorption by modifying a smectite with organic nutrients. Toxins, 12(1), 21.

    Article  Google Scholar 

  • Barrientos-Velazquez, A. L., Arteaga, S., Dixon, J. B., & Deng, Y. (2016a). The effects of pH, pepsin, exchange cation, and vitamins on aflatoxin adsorption on smectite in simulated gastric fluids. Applied Clay Science, 120, 17–23.

    Article  Google Scholar 

  • Barrientos-Velazquez, A. L., Marroquin Cardona, A., Liu, L., Phillips, T., & Deng, Y. (2016b). Influence of layer charge origin and layer charge density of smectites on their aflatoxin adsorption. Applied Clay Science, 132–133, 281–289.

    Article  Google Scholar 

  • Dakovic, A., Tomasevic-Canovic, M., Dondur, V., Vujakovic, A., & Radosevic, P. (2000). Kinetics of aflatoxin B1 and G2 adsorption on Ca-clinoptilolite. Journal of the Serbian Chemical Society, 65(10), 715–723.

    Article  Google Scholar 

  • Deng, Y., Liu, L., Luisa Barrientos Velazquez, A., & Dixon, J. B. (2012). The determinative role of the exchange cation and layer-charge density of smectite on aflatoxin adsorption. Clays and Clay Minerals, 60(4), 374–386.

    Article  Google Scholar 

  • Deng, Y., & Szczerba, M. (2011). Computational evaluation of bonding between aflatoxin B1 and smectite. Applied Clay Science, 54, 26–33.

    Article  Google Scholar 

  • Deng, Y., Velázquez, A. L. B., Billes, F., & Dixon, J. B. (2010). Bonding mechanisms between aflatoxin B1 and smectite. Applied Clay Science, 50(1), 92–98.

    Article  Google Scholar 

  • Deng, Y., White, G. N., & Dixon, J. B. (2013). Soil mineralogy laboratory manual. Texas A&M University.

    Google Scholar 

  • Elliott, C., Connolly, L., & Kolawole, O. (2020). Potential adverse effects on animal health and performance caused by the addition of mineral adsorbents to feeds to reduce mycotoxin exposure. Mycotoxin Research, 36, 115–126.

    Article  Google Scholar 

  • Ewing, W., & Charlton, S. (2005). The mineral directory. Context publications.

    Google Scholar 

  • Fowler, J., Hashim, M., Barrientos-Velazquez, A., Deng, Y., & Bailey, C. A. (2014). Utilization of a spray-applied calcium bentonite clay to ameliorate the effects of low-levels of aflatoxinin starter broiler diets containing DDGS. Natural Products Chemistry & Research, 2, 1–4.

    Google Scholar 

  • Gates, W. P. (2005). Infrared spectroscopy and the chemistry of dioctahedral smectites. In I. Kloprogge (Ed.), Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides (pp. 125–168). The Clay Minerals Society.

    Google Scholar 

  • Georgievski, V. I. (1982). Mineral Feeding of Poultry. In V. I. Georgievski, B. N. Annenhov, V. T. Samokhin, & Ifis (Eds.), Mineral Nutrition of Animals (pp. 417–418). Amsell Bookbinders Ltd..

    Google Scholar 

  • Huff, W. E., Kubena, L. F., Harvey, R. B., & Phillips, T. D. (1992). Efficacy of hydrated sodium calcium aluminosilicate to reduce the individual and combined toxicity of aflatoxin and ochratoxin-A. Poultry Science, 71(1), 64–69.

    Article  Google Scholar 

  • Kannewischer, I., Arvide, M. G. T., White, G. N., & Dixon, J. B. (2006). Smectite clays as adsorbents of aflatoxin B1: initial steps. Clay Science, 12(Supplement 2), 199–204.

    Google Scholar 

  • Katsoulos, P. D., Karatzia, M. A., Boscos, C., Wolf, P., & Karatzias, H. (2016). In-field evaluation of clinoptilolite feeding efficacy on the reduction of milk aflatoxin M1 concentration in dairy cattle. Journal of Animal Science and Technology., 58, 24.

    Article  Google Scholar 

  • Kraljević Pavelić, S., Simović Medica, J., Gumbarević, D., Filošević, A., Pržulj, N., & Pavelić, K. (2018). Critical review on zeolite clinoptilolite safety and medical applications in vivo. Frontiers in Pharmacology, 9, 1350.

    Article  Google Scholar 

  • Kubena, L. F., Harvey, R. B., Huff, W. E., & Corrier, D. E. (1990). Efficacy of a hydrated sodium calcium aluminosilicate to reduce the toxicity of aflatoxin and T-2 toxin. Poultry Science, 69, 1078–1086.

    Article  Google Scholar 

  • Kubena, L. F., Harvey, R. B., Huff, W. E., Elissalde, M. H., Yersin, A. G., Phillips, T. D., & Rottinghaus, G. E. (1993). Efficacy of hydrated sodium calcium aluminosilicate to reduce the toxicity of aflatoxin and daicetoxyscirpenol. Poultry Science, 72, 51–59.

    Article  Google Scholar 

  • Kunze, G. W., & Dixon, J. B. (1986). Pretreatment for mineralogy analysis. In A. Klute (Ed.), Methods of Soil Analysis Part 1: Physical and Mineralogical Methods (Vol. 2nd, pp. 91–100). Soil Science Society of America, Inc..

    Google Scholar 

  • Leeson, S., Diaz, G., & Summers, J. D. (1995). Poultry metabolic disorders and mycotoxins. University Books.

    Google Scholar 

  • Lindemann, M. D., Blodgett, D. J., Kornegay, E. T., & Schurig, G. G. (1993). Potential ameliorators of aflatoxicosis in weanling growing swine. Journal of Animal Science, 71(1), 171–178.

    Article  Google Scholar 

  • Madejová, J. (2003). FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31(1), 1–10.

    Article  Google Scholar 

  • Madejová, J., Gates, W. P., & Petit, S. (2017). Chapter 5 - IR spectra of clay minerals. In W. P. Gates, J. T. Kloprogge, J. Madejová, & F. Bergaya (Eds.), (Vol. 8, pp. 107–149). Elsevier. https://doi.org/10.1016/B978-0-08-100355-8.00005-9

    Chapter  Google Scholar 

  • Madejová, J., & Komadel, P. (2001). Baseline studies of the Clay Minerals Society source clays: infrared methods. Clays and Clay Minerals, 49(5), 410–432.

    Article  Google Scholar 

  • Maki, C. R., Thomas, A. D., Elmore, S. E., Romoser, A. A., Harvey, R. B., Ramirez-Ramirez, H. A., & Phillips, T. D. (2015). Effects of calcium montmorillonite clay and aflatoxin exposure on dry matter intake, milk production, and milk composition. Journal of Dairy Science, 99(2), 1039–1046.

    Article  Google Scholar 

  • Miazzo, R., Peralta, M. F., Magnoli, C., Salvano, M., Ferrero, S., Chiacchiera, S. M., & Dalcero, A. (2005). Efficacy of sodium bentonite as a detoxifier of broiler feed contaminated with aflatoxin and fumonisin. Poultry Science, 84(1), 1–8.

    Article  Google Scholar 

  • National Research Council, Committee on Minerals and Toxic Substances in Diets and Water for Animals, Board on Agriculture and Natural Resources & Division on Earth and Life Studies (2005). Mineral Tolerance of Animals. National Academies Press, Washington, D.C.

  • Oguz, H., Kececi, T., Birdane, Y. O., Onder, F., & Kurtoglu, V. (2000). Effect of clinoptilolite on serum biochemical and haematological characters of broiler chickens during aflatoxicosis. Research in Veterinary Science, 69(1), 89–93.

    Article  Google Scholar 

  • OTSC. (2011). Aflatoxin in Feeds (corn and Cottonseed Meal Products) by HPLC/PHRED.

  • Pais, I., & Jones, J. (1997). The Handbook of Trace Minerals. S. Lucie Press.

    Google Scholar 

  • Phillips, T. D., & Carpenter, R. H. (2008). Composition comprising calcium aluminosilicate clay and methods for the enterosorption and management of toxins (US Patent No. 2007-821982 2008008763).

  • Phillips, T. D., Clement, B. A., & Park, D. L. (1994). Approaches to reduction of aflatoxins in foods and feeds. In D. L. Eaton (Ed.), The toxicology of aflatoxins (pp. 383–399). Academic Press, Inc.

    Chapter  Google Scholar 

  • Phillips, T. D., Kubena, L. F., Harvey, R. B., Taylor, D. R., & Heidelbaugh, N. D. (1987). Mycotoxin hazards in agriculture: new approach to control. Journal of Animal Veterinary Medicine, 190, 1617–1618.

    Google Scholar 

  • Phillips, T. D., Kubena, L. F., Harvey, R. B., Taylor, D. R., & Heidelbaugh, N. D. (1988). Hydrated sodium calcium aluminosilicate: a high affinity sorbent for aflatoxin. Poultry Science, 67, 243–247.

    Article  Google Scholar 

  • Phillips, T. D., Sarr, A. B., & Grant, P. G. (1995). Selective chemisorption and detoxification of aflatoxins by phyllosilicate clay. Natural Toxins, 3, 204–213.

    Article  Google Scholar 

  • Phillips, T. D., Wang, M., Elmore, S. E., Hearon, S., & Wang, J. S. (2019). NovaSil clay for the protection of humans and animals from aflatoxins and other contaminants. Clays and Clay Minerals, 67(1), 99–110. https://doi.org/10.1007/s42860-019-0008-x

    Article  Google Scholar 

  • Pimpukdee, K., Kubena, L. F., Bailey, C. A., Huebner, H. J., Afriyie-Gyawu, E., & Phillips, T. D. (2004). Aflatoxin-induced toxicity and depletion of hepatic vitamin A in young broiler chicks: protection of chicks in the presence of low levels of NovaSil PLUS in the diet. Poultry Science, 83(5), 737–744.

    Article  Google Scholar 

  • Quezada, T., Cuéllar, H., Jaramillo-Juárez, F., Valdivia, A. G., & Reyes, J. L. (2000). Effects of aflatoxin B1 on the liver and kidney of broiler chickens during development. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 125(3), 265–272.

    Google Scholar 

  • Quisenberry, J. H. (1968). The Use of Clay in Poultry Feed. Clay and Clay Minerals, 16, 267–270.

    Article  Google Scholar 

  • Ramos, A. J., & Hernandez, E. (1996). In vitro aflatoxin adsorption by means of a montmorillonite silicate. A study of adsorption isotherms. Animal Feed Science and Technology, 62(2-4), 263–269.

    Article  Google Scholar 

  • Reyes, C., Gutiéttez, M., & Joya, S. (2020). The importance of minerals in medical geology: Impacts of the environment on health. Archivos de Medicina (Manizales)., 21, 182–202.

    Google Scholar 

  • Rosa, C. A., Miazzo, R., Magnoli, C., Salvano, M., Chiacchiera, S. M., Ferrero, S., & Dalcero, A. (2001). Evaluation of the efficacy of bentonite from the south of Argentina to ameliorate the toxic effects of aflatoxin in broilers. Poultry Science, 80(2), 139–144.

    Article  Google Scholar 

  • Schulthess, C. P., & Dey, D. K. (1996). Estimation of Langmuir constants using linear and nonlinear least squares regression analyses. Soil Science Society of America Journal, 60, 433–442.

    Article  Google Scholar 

  • Senkayi, A. L., Dixon, J. B., Hossner, L. R., Abder-Ruhman, M., & Fanning, D. S. (1984). Mineralogy and genetic relationships of tonstein, bentonite, and lignitic strata in the Eocene Yegua Formation of East-Central Texas. Clays and Clay Minerals, 32, 259–271.

    Article  Google Scholar 

  • Soil Survey Staff (2004). Soil Survey laboratory methods manual. Soil Survey Investigation Report No. 42. USDA, NRCS, Lincoln, NE.

  • Tenorio Arvide, M. G., Mulder, I., Barrientos Velazquez, A. L., & Dixon, J. B. (2008). Smectite clay adsorption of aflatoxin vs. octahedral composition as indicated by FTIR. Clays and Clay Minerals, 56, 571–578.

    Article  Google Scholar 

  • Tessari, E. N. C., Oliveira, C. A. F., Cardoso, A. L. S. P., Ledoux, D. R., & Rottinghaus, G. E. (2006). Effects of aflatoxin B1 and fumonisin B1 on body weight, antibody titres and histology of broiler chicks. British Poultry Science, 47(3), 357–364.

    Article  Google Scholar 

  • Thieu, N., & Pettersson, H. (2008). Evaluation of the capacity of zeolite and bentonite to adsorb aflatoxin in simulated gastrointestinal fluids. Mycotoxin Research, 24(3), 124–129.

    Article  Google Scholar 

  • Tomasevic-Canovic, M., Dakovic, A., Markovic, V., & Stojsic, D. (2001). The effect of exchangeable cations in clinoptilolite and montmorillonite on the adsorption of aflatoxin B1. Journal of the Serbian Chemical Society, 66(8), 555–561.

    Article  Google Scholar 

Download references

Acknowledgments

Research funding was provided by the National Corn Growers Association. The bentonite samples were provided by Southern Clay Products; in particular Geologist Charlie Smith facilitated sample collection and provided additional information on the mine sites and samples. To the Veterinary Diagnostic Laboratory at Iowa State University, the authors express appreciation for conducting the analysis on the liver samples.

Funding

National Corn Growers Association. Grant Number: 406398-1226; 406573-9266; 04022013.

Author information

Authors and Affiliations

Authors

Contributions

Ana Luisa Barrientos Velazquez, Youjun Deng: Manuscript writing, experimental design, data analysis and data collection.

Christopher A. Bailey: Manuscript review, animal trial experimental design, data analysis and data collection for the animal trial.

Akramul Haq: Animal trial experimental design, data analysis and data collection for the animal trial.

Justin Fowler, Radhika Kakani: Data collection for the animal trial.

Corresponding author

Correspondence to Youjun Deng.

Ethics declarations

Ethics approval

Ethical approval: All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted and ethical approval was obtained from Dr. John N. Stallone, Institutional Animal Care and Use Committee, Permit Number: IACUC 2014-0030.

Consent for publication

The authors agree to publication in Clays and Clay Minerals

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrientos-Velazquez, A.L., Kakani, R., Fowler, J. et al. Efficacy of Two Texas Bentonites in Binding Aflatoxin B1 and in Reducing Aflatoxicosis in Broilers. Clays Clay Miner. 70, 354–369 (2022). https://doi.org/10.1007/s42860-022-00191-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-022-00191-8

Keywords

Navigation