Skip to main content
Log in

Boron and lithium isotopic signatures of nanometer-sized smectite-rich mixed-layers of bentonite beds from Campos Basin (Brazil)

  • Original Paper
  • Published:
Clays and Clay Minerals

Abstract

Boron and lithium were analyzed in three nanometer-sized (<20, 20-50 and 50-100 nm) separates of two Santonian (85.8-83.5 Ma) bentonite samples collected closely in the Campos Basin along the southeastern Atlantic coast (Brazil). The B and Li data give various trends that suggest varied crystallization conditions for separates that consist of overwhelming smectite with less than 9% illitic layers. The δ11B of the few illitic tetrahedral sites from one of the samples remains quite constant, while its contents are strictly correlated with those of K, which suggests that illitization proceeded by interaction with pore fluids of the host sediments that supplied the K. In the second sample, the δ11B of the illite layers from the two coarser fractions is indicative of an early volcanic origin, while the smaller size fraction also interacted with sedimentary fluids. Favored by octahedral substitutions of the smectite layers, the δ7Li is more strictly regulated by a volcanic link. In turn, the information of the B and Li isotopic compositions and contents from studied mixed-layers suggests a various origin for the few illite layers of the smectite-rich I-S that contain more B than the smectite layers that host more Li. The difference appears to be sample-site and crystal-size dependent, fueled by pore fluids of the hosting turbidites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Figure 3

Similar content being viewed by others

Availability of data and material

EarthChem Repository; ASU Repository

Code availability

Not applicable

REFERENCES

  • Altaner, S. P., Hower, J., Whitney, G., & Aronson, J. L. (1984). Model for K-bentonite formation: Evidence from zoned K-bentonites in the Disturbed Belt, Montana. Geology, 12, 412–425.

    Article  Google Scholar 

  • Alves D. B., Mizusaki A. M. P. & Caddah L. E. G. (1993) Camadas de cinzasvulcanicas no Santoniano (Creticeo Superior) da Bacia de Campos. Simposio de Geologia do Sudeste, 3, Rio de Janeiro, SBG, Atas, 37-42.

  • Baadsgaard, H., Lerbekmo, J. F., & McDougall, I. (1988). A radiometric age for the Cretaceous–Tertiary boundary based upon K–Ar, Rb–Sr, and U–Pb ages of bentonites from Alberta, Saskatchewan, and Montana. Canadian Journal of Earth Sciences, 25, 88–106.

    Article  Google Scholar 

  • Burst, J. F. (1959). Post diagenetic clay mineral-environmental relationships in the Gulf Coast Eocene in clays and clay minerals. Clays and Clay Minerals, 6, 327–341.

    Article  Google Scholar 

  • Caddah, L. F. G., Alves, D. B., & Mizusaki, A. M. P. (1998). Turbidites associated with bentonites in the Upper-Cretaceous of the Campos Basin, offshore Brazil. Sedimentary Geology, 115, 175–184.

    Article  Google Scholar 

  • Cardoso R. A. & Hamza V. M. (2014) Heat flow in the Campos sedimentary basin and thermal history of the continental margin of southeast Brazil. ISRN Geophysics, Hindawi Publication Corporation Article ID 384752, 19 pages

  • Christidis, G., & Huff, W. (2009). Geological aspects and genesis of bentonites. Elements,5, 93–98. https://doi.org/10.2113/gselements.5.2.93

    Article  Google Scholar 

  • Clauer, N., Chaudhuri, S., Kralik, M., & Bonnot-Courtois, C. (1993). Effects of experimental leaching on Rb-Sr and K-Ar isotopic systems and REE contents of diagenetic illite. Chemical Geology, 103, 1–16.

    Article  Google Scholar 

  • Clauer, N., Środoń, J., Francù, J., & Šucha, V. (1997). K-Ar dating of illite fundamental particles separated from illite/smectite. Clay Minerals, 32, 181–196.

    Article  Google Scholar 

  • Clauer, N., Liewig, N., Pierret, M. C., & Toulkeridis, T. (2003). Crystallization conditions of fundamental particles from mixed-layers illite-smectite of bentonites based on isotopic data (K-Ar, Rb-Sr and δ18O). Clays and Clay Minerals, 51, 664–674.

  • Clauer, N., O’Neil, J. R., Honnorez, J., & Buatier, M. (2011). 87Sr/86Sr and 18O/16O ratios of clay minerals from a hydrothermal mound near the Galapagos rift as records of origin, crystallization temperature and fluid composition. Marine Geology, 288, 32–42.

    Article  Google Scholar 

  • Clauer, N., Honty, M., Fallick, A. E., Šucha, V., & Aubert, A. (2014). Regional illitization in bentonite beds from East Slovak Basin based on isotopic characteristics (K-Ar, δ O and δD) of illite-type nanoparticles. Clay Minerals,49, 247–275.

    Article  Google Scholar 

  • Clauer, N., Williams, L., Lemarchand, D., Florian, P., & Honty, M. (2018). Illitization decrypted by B and Li isotope geochemistry of nanometer-sized illite crystals of bentonite beds from East Slovak Basin. Chemical Geology, 477, 177–194.

    Article  Google Scholar 

  • Clauer, N., Środoń, J., Aubert, A., Uysal, I. T., & Toulkeridis, T. (2020). K-Ar and Rb-Sr dating of nanometer-sized smectite-rich mixed-layers from bentonite beds of the Campos Basin (Rio de Janeiro State, Brazil). Clays and Clay Minerals, 68, 446–464.

    Article  Google Scholar 

  • Clauer, N., Williams, L. B., & Fallick, A. E. (2022). Tracing organic-inorganic interactions by light stable isotopes (H, Li, B, O) of an oil-bearing shale and its clay fraction during hydrous pyrolysis. Clays and Clay Minerals, in press.

  • Contreras J. (2011) Seismo-stratigraphy and numerical basin modeling of the southern Brazilian continental margin (Campos, Santos and Pelotas basins). PhD thesis, University Heidelberg, Germany, 146 p.

  • Elliott, W. C., & Aronson, J. L. (1987). Alleghanian episode of K-bentonites illitization in the southern Appalachian Basin. Geology, 15, 735–739.

    Google Scholar 

  • Essene, E. J., & Peacor, D. R. (1995). Clay mineral thermometry - a critical prospective. Clays and Clay Minerals, 43, 540–553.

    Article  Google Scholar 

  • Hindshaw, R. S., Tosca, R., Goût, T. L., Tosca, N. J., & Tipper, E. T. (2019). Experimental constraints on Li isotope fractionation during clay formation. Geochimica et Cosmochimica Acta, 250, 219–237.

    Article  Google Scholar 

  • Hingston, F. J. (1964). Reactions between boron and clays. Australian Journal of Soil Research, 2, 83–95.

    Article  Google Scholar 

  • Honty, M., Uhlík, P., Šucha, V., Caplovicová, M., Francù, J., Clauer, N., & Biron, A. (2004). Smectite to illite alteration in salt-bearing bentonites (The East Slovak Basin). Clays and Clay Minerals, 52, 533–551.

    Article  Google Scholar 

  • Hower, J., Eslinger, E. V., Hower, M., & Perry, E. A. (1976). Mechanism of burial metamorphism of argillaceous sediments. 1. Mineralogical and chemical evidence. Geological Society of America Bulletin, 87, 725–737.

    Article  Google Scholar 

  • Huff, W. D. (2008). Ordovician K-bentonites: Issues in interpreting and correlating ancient tephras. Quaternary International, 178, 276–287.

    Article  Google Scholar 

  • Jackson M. L. (1975) Soil chemical analysis – advanced course. Madison, Wisconsin 386p.

  • Jones, C. E., & Jenkyns, H. C. (2001). Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. American Journal of Sciences, 301, 112–149.

    Google Scholar 

  • Köster, M. H., Williams, L. B., Kudejova, O., & Gilg, H. A. (2019). The boron isotope geochemistry of smectites from sodium, magnesium and calcium bentonite deposits. Chemical Geology, 12035.

  • Martos-Villa, R., Mata M. P., Williams L. B., Nieto F., Arroyo Rey X. & Sainz-Diaz C. I. (2020) Evidence of hydrocarbon-rich fluid interaction with clays: Clay mineralogy and boron isotope data from gulf of cádiz mud volcano sediments. Minerals10, 651. https://doi.org/10.3390/min10080651

  • McArthur, J. M., Howarth, R. J., & Bailey, T. R. (2001). Strontium isotope stratigraphy: LOWESS Version 3: Best fit to the marine Sr-isotope curve 0-509 Ma and accompanying look-up table for deriving numerical age. Journal of Geology, 109, 155–170.

    Article  Google Scholar 

  • Mohriak, W. U., Mello, M. R., Karner, G. D., Dewey, J. F., & Maxwell, J. R. (1990). Structural and stratigraphic evolution of the Campos Basin, offshore Brazil. In A. J. Tankard & H. R. Balkwill (Eds.), Extensional tectonics and stratigraphy of the North Atlantic margins. American Association of Petroleum Geologists Memoir (Vol. 46, pp. 577–598).

  • Samson, S. D., Patchett, P. J., Roddick, J. C., & Parrish, R. R. (1989). Origin and tectonic setting of Ordovician bentonites in North America: Isotopic and age constraints. Geological Socieyu of America Bulletin, 101, 1175–1181.

    Article  Google Scholar 

  • Środoń J. & Eberl D. D. (1984) Illite. In: Bailey S.W. (Ed.), Mineralogical society of america, reviews in mineralogy 13, Washington, DC, 584 p.

  • Środoń, J., Elsass, F., McHardy, W. J., & Morgan, D. J. (1992). Chemistry of illite/smectite inferred from TEM measurements of fundamental particles. Clay Minerals, 27, 137–158.

  • Šucha, V., Kraus, I., Gerthofferová, H., Peteš, J., & Sereková, M. (1993). Smectite to illite conversion in bentonites and shales of the East Slovak Basin. Clay Minerals, 28, 243–253.

    Article  Google Scholar 

  • Teichert, Z., Bose, M., & Williams, L. B. (2020). Lithium isotope compositions of U.S. coals and source rocks: Potential tracer of hydrocarbons. Chemical Geology, 549, 119694.

    Article  Google Scholar 

  • Toulkeridis, T., Clauer, N., Chaudhuri, S., & Goldstein, S. L. (1998). Multi-method (K-Ar, Rb-Sr, Sm-Nd) dating of bentonite minerals from eastern United States. Basin Research, 10, 261–270.

    Article  Google Scholar 

  • Viana, A. R., Faugères, J. C., Kowsmann, R. O., Lima, J. A. M., Caddah, L. F. G., & Rizzo, J. G. (1998). Hydrology, morphology and sedimentology of the Campos continental margin, offshore Brazil. Sedimentary Geology, 115, 133–157.

    Article  Google Scholar 

  • Weaver, C. E. (1957). The clay petrology of sediments. Clays and Clay Minerals, 6, 154–187.

    Article  Google Scholar 

  • Williams L. B., Clauer N. & Hervig R. L. (2012) Light stable isotope microanalysis of clays in sedimentary rocks. In: Sylvester P. (Ed.) Quantitative mineralogy and microanalysis of sediments and sedimentary rocks. Mineralogical Association of Canada, Short Course 42, 55-73.

  • Williams, L. B., Środoń, J., Huff, W. D., Clauer, N., & Hervig, R. L. (2013). Light element distributions (N, B, Li) in Baltic Basin bentonites record organic sources. Geochimica et Cosmochimica Acta, 120, 582–599.

    Article  Google Scholar 

  • Williams, L. B., Turner, A., & Hervig, R. L. (2007). Intracrystalline boron isotope partitioning in illite-smectite: Testing the geothermometer. American Mineralogist, 92, 1958–1965.

    Article  Google Scholar 

  • Zhang, L., Chan, L. H., & Gieskes, J. M. (1998). Lithium isotope geochemistry of pore waters from Ocean Drilling Program Sites 918 and 919, Irminger Basin. Geochimica et Cosmochimica Acta, 62, 2437–2450.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Drs. D.B. Alves and F. Pellon de Miranda of the Brazilian Research Development Center (CENPES) for the sample supply, as well as the geographic, stratigraphic information and constructive discussions. The SIMS analyses for B and Li isotopic compositions were conducted at the Arizona State University SIMS Facility supported by the US National Science Foundation grant EAR 1819550. Two reviewers are also sincerely thanked for their comments.

Funding

US National Science Foundation grant EAR 1819550.

Author information

Authors and Affiliations

Authors

Contributions

Conceived by Norbert Clauer, performed and written by all authors

Corresponding author

Correspondence to Norbert Clauer.

Ethics declarations

Ethics approval

Not required

Consent to participate

Not applicable

Consent for publication

Approved by all authors

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Availability of data and material

As above

Funding

As above

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clauer, N., Williams, L.B. & Uysal, I.T. Boron and lithium isotopic signatures of nanometer-sized smectite-rich mixed-layers of bentonite beds from Campos Basin (Brazil). Clays Clay Miner. 70, 72–83 (2022). https://doi.org/10.1007/s42860-022-00177-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-022-00177-6

Keywords

Navigation