Skip to main content
Log in

Effects of Metal-Polycation Pillaring and Exchangeable Cations on Aflatoxin Adsorption by Smectite

  • Published:
Clays and Clay Minerals

Abstract

Natural smectites bind aflatoxins from water effectively, but the complex chemical environment in the guts of mammals and other animals can limit binding of aflatoxins. Many efforts have been made to enhance the adsorption capacity and affinity of smectites for aflatoxins in the presence of biological compounds. The main objective of the present study was to modify smectite structures by pillaring and cation exchange to enhance aflatoxin B1 adsorption capacity and selectivity. Smectite was pillared with Al and Al-Fe polycations or saturated with Ca, Mg, Zn, or Li. Structural changes in smectites with or without heat treatment were determined using X-ray diffraction and Fourier-transform infrared spectroscopy. Equilibrium aflatoxin B1 adsorption to the smectites was measured in aqueous solution and in simulated gastric fluid. Pillaring with the polycations expanded smectites in the z-direction to 18.6 Å and the expansion was stable after heating at 500°C. Changes in the Al–OH–Al infrared bands in the stretching region supported the formation of pillared clays. Migration of Mg, Zn, and Li into the octahedral sites of the smectite was observed as Mg and Zn saturation yielded a d spacing of 15 Å at 200°C which collapsed to 9.6 Å at 400°C. The 14.6 Å peak of the Li-saturated smectite collapsed to 9.6 Å at 200°C while the 15 Å Ca-saturated smectite peak was stable up to 400°C. The unheated Al- and AlFe-pillared smectites adsorbed significantly more aflatoxin B1 from an aqueous suspension than did unpillared clay. In both water and simulated gastric fluid, heat treatment decreased aflatoxin B1 adsorption to pillared smectites, but heat treatment increased aflatoxin B1 adsorption to unpillared smectites. Without heat treatment, smectites saturated with divalent cations (Ca, Mg, Zn) adsorbed more aflatoxin B1 from an aqueous suspension than the smectite saturated with a monovalent cation (Li). Ca-saturated smectite showed the greatest aflatoxin B1 adsorption, 114 g kg–1, from aqueous suspension after 400°C heat treatment. The Zn-, Mg-, and Li-saturated smectites showed maximum aflatoxin adsorption of 107, 93, and 90 g kg–1, respectively, after 200°C heat treatment. From simulated gastric fluid with pepsin, the 200°C heated, Zn-saturated smectite had maximum aflatoxin B1 adsorption of 68 g kg–1. Pillared smectites effectively adsorbed aflatoxin B1 from aqueous suspension, but Ca- and Zn-saturated smectites after heat treatment might improve the selectivity of smectites for aflatoxin B1 over pepsin and enhance the efficacy of smectite as a feed additive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

Download references

ACKNOWLEDGMENTS

The present study was carried out during a student-exchange program funded by the Higher Education Commission of Pakistan.

Funding

Funding sources are as stated in the Acknowledgments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youjun Deng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

This paper belongs to a thematic set on ‘Biological toxins–Clay Interactions’

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Akhtar, M.S., Akbar, S. et al. Effects of Metal-Polycation Pillaring and Exchangeable Cations on Aflatoxin Adsorption by Smectite. Clays Clay Miner. 70, 155–164 (2022). https://doi.org/10.1007/s42860-021-00159-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-021-00159-0

Keywords

Navigation