Skip to main content
Log in

GENESIS OF THE YARIKÇI HYDROTHERMAL CLAY DEPOSIT WITHIN THE MESOZOIC METAMORPHIC UNITS, MİHALIÇÇIK, ESKİŞEHİR, TURKEY

  • Published:
Clays and Clay Minerals

Abstract

Hydrothermal alteration led to development of the Yarıkçı clay deposit within the Mesozoic chlorite-, muscovite-, chlorite-muscovite-schist, and garnet-graphite phyllite units along NW–SE- and N–S-trending faults in Mihalıççık in western central Anatolia. The geological, mineralogical, and geochemical characteristics and genesis of this economically important clay deposit have not been examined in detail previously. The present study has attempted to fill this gap. Green smectitic and cream kaolinitic claystones are abundant with smaller amounts of gray illite, dark brown Fe oxides, and silica phases occurring as stockwork/fracture infill and stain/coating. These units are covered by a dark, hard, sharp-edged, and thick silica cap. Metamorphic units exhibit cataclastic texture due to tectonic activities. Muscovite is mostly degraded to kaolinite, and feldspars show sericitization and argillization. Kaolinite typically has a platy form with irregular margins and locally sub-rounded, book-like texture suggesting hydrolysis during the hydrothermal injections. The association of Fe oxides, cristobalite/tridymite/quartz, gypsum/anhydrite, and jarosite are indicative of intense hydrothermal activities and development of kaolinite under acidic geochemical conditions. The local enrichment of SiO2, Fe2O3, S, Cu, and Au also supports this suggestion. The leaching of Sr, Rb, Ba, and Zr, and the slight increase in LREE/MREE+HREE ratios together with the negative Eu and Ce anomalies suggest the selective dissolution of muscovite, garnet, feldspar, and pyroxene by the hydrothermal fluids. Thus, abundant claystones of smectite and kaolinite were formed via the increase in Al+Fe+Mg/Si and Al±Fe/Si ratios in the alkaline and acidic environment, respectively, under the tectonic control of hydrothermal activity as seen in the alteration of chlorite, muscovite, and feldspar in metamorphic units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  • Acarlioğlu, S., Kadir, S., Abdioğlu, E., & Arslan, M. (2013). Epithermal-alteration geology, mineralogy and geochemistry of Eocene volcanic rocks in the Hasandağ (Giresun) area, eastern Pontides, NE Turkey. Neues Jahrbuch für Mineralogie Abhandlungen, 190, 79–99.

    Article  Google Scholar 

  • Akbulut, M., Pişkin, Ö., & Karayiğit, A. İ. (2006). The genesis of the carbonatized and silicified ultramafics known as listvenites: a case study from the Mihallıççık region (Eskişehir), NW Turkey. Geological Journal, 41, 557–580.

    Article  Google Scholar 

  • Aliyari, F., Rastad, E., Goldfarb, R. J., & Sharif, J. A. (2014). Geochemistry of hydrothermal alteration at the Qolqoleh gold deposit, northern Sanandaj–Sirjan metamorphic belt, northwestern Iran: Vectors to high-grade ore bodies. Journal of Geochemical Exploration, 140, 111–125.

    Article  Google Scholar 

  • Aydınçakır, E., & Şen, C. (2013). Petrogenesis of the post-collisional volcanic rocks from the Borçka (Artvin) area: Implications for the evolution of the Eocene magmatism in the Eastern Pontides (NE Turkey). Lithos, 172–173, 98–117.

    Article  Google Scholar 

  • Barrett, T.J. & MacLean, W.H. (1994). Chemostratigraphy and hydrothermal alteration in exploration for VHMS deposits in greenstones and younger volcanic rocks. Pp. 433–467 in: Alteration and alteration processes associated with ore-forming systems. (D.R. Lentz, editor). Geological Association of Canada Short Course Notes 11, NL, St Johns, Nova Scotia, Canada.

  • Barrett, T. J., & MacLean, W. H. (1999). Volcanic sequences, lithogeochemistry, and hydrothermal alteration in some bimodal volcanic-associated massive sulfide systems. Reviews in Economic Geology, 8, 101–131.

    Google Scholar 

  • Bau, M., & Dulski, P. (1996). Distribution of yttrium and rare–earth elements in the Penge and Kuruman iron-Formations, Transvaal Supergroup, South Africa. Precambrian Research, 79, 37–55.

    Article  Google Scholar 

  • Bea, F., Montero, P., & Ortega, M. (2006). A LA–ICP–MS evaluation of Zr reservoirs in common crustal rocks: Implications for Zr and Hf geochemistry, and zircon-forming processes. The Canadian Mineralogist, 44, 693–714.

    Article  Google Scholar 

  • Bhattacharya, S., Mitra, S., Gupta, S., Jain, N., Chauhan, P., Parthasarathy, G., & Ajai. (2016). Jarosite occurrence in the Deccan Volcanic Province of Kachchh, western India: Spectroscopic studies on a Martian analog locality. Journal of Geophysical Research: Planets, 121, 402–431.

    Article  Google Scholar 

  • Boulais, P., Valley, J. M., Choux, J. E., Fourcade, S., & Martineau, F. (2000). Origin of kaolinization in Brittany (NW France) with emphasis on deposits over granite: stable isotopes (O, H) constraints. Chemical Geology, 168, 211–223.

    Article  Google Scholar 

  • Boyraz, S. (2004). Mülk-Demirci yöresi (Eskişehir-Sivrihisar) Neojen (Üst Miyosen-Pliyosen) birimlerinin kil mineralojisi. Ankara Üniversitesi, Fen Bilimleri Ensitüsü, Yüksek Lisans Tezi, Ankara (Unpublished).

  • Brindley, G.W. (1980). Quantitative X-ray analysis of clays. Pp. 411–438 in: Crystal Structures of Clay Minerals and their X-ray Identification (G.W. Brindley and G. Brown, editors). Mineralogical Society Monograph 5, London.

  • Çelik Karakaya, M., Karakaya, N., Küpeli, Ş., & Yavuz, F. (2012). Mineralogy and geochemical behavior of trace elements of hydrothermal alteration types in the volcanogenic massive sulfide deposits, NE Turkey. Ore Geology Reviews, 48, 197–224.

    Article  Google Scholar 

  • Chen, C., Barcellos, D., Richter, D. D., Schroeder, P. A., & Thompson, A. (2018). Redoximorphic Bt horizons of the Calhoun CZO soils exhibit depth-dependent iron-oxide crystallinity. Journal of Soils and Sediments, 19, 785–797.

    Article  Google Scholar 

  • Craw, D., Upton, P., & Mackenzie, D. J. (2009). Hydrothermal alteration styles in ancient and modern orogenic gold deposits, New Zealand. New Zealand Journal of Geology and Geophysics, 52, 11–26.

    Article  Google Scholar 

  • Davis, P. B., & Whitney, D. L. (2006). Petrogenesis of lawsonite and epidote eclogite and blueschist, Sivrihisar Massif, Turkey. Journal of Metamorphic Geology, 24, 823–849.

    Google Scholar 

  • Degeling, H., Eggins, S., & Ellis, D. J. (2001). Zr budgets for metamorphic reactions, and the formation of zircon from garnet breakdown. Mineralogical Magazine, 65, 749–758.

    Article  Google Scholar 

  • Dill, H. G., Bosse, H.-R., Henning, K.-H., Fricke, A., & Ahrendt, H. (1997). Mineralogical and chemical variations in hypogene and supergene kaolin deposits in a mobile fold belt of the Central Andes of northwestern Peru. Mineralium Deposita, 32, 149–163.

    Article  Google Scholar 

  • Dutrizac, J. E., & Jambor, J. L. (2000). Jarosites and their application in hydrometallurgy. C. N. Alpers, J. L. Jambor, & D. K. Nordstrom (Eds.), Sulfate minerals - crystallography, geochemistry, and environmental significance (pp. 405–452). Reviews in Mineralogy, 40. chantilly: Mineralogical Society of America.

  • Ece, Ö. I., & Schroeder, P. A. (2007). Clay mineralogy and chemistry of halloysite and alunite deposits in the Turplu area, Balikesir, Turkey. Clays and Clay Minerals, 55, 18–35.

  • Ece, Ö. I., Schroeder, P. A., Smilley, M. J., & Wampler, J. M. (2008). Acid-sulphate alteration of andesitic tuffs and genesis of halloysite and alunite deposits in the Biga Peninsula, Turkey. Clay Minerals, 43, 281–315.

    Article  Google Scholar 

  • Eren, M., & Kadir, S. (2013). Colour origin of red sandstone beds within the Hüdai Formation (Early Cambrian), Aydıncık (Mersin), southern Turkey. Turkish Journal of Earth Sciences, 22, 563–573.

    Google Scholar 

  • Eren, M., Kadir, S., Kapur, S., Huggett, J., & Zucca, C. (2015). Colour origin of Tortonian red mudstones within the Mersin area, southern Turkey. Sedimentary Geology, 318, 10–19.

    Article  Google Scholar 

  • Erhenberg, S. N. (1991). Kaolinized, potassium-leached zones at the contacts of the Garn Formation, Haltenbanken, mid-Norwegian continental shelf. Marine and Petroleum Geology, 8, 250–269.

    Article  Google Scholar 

  • Erkoyun, H., & Kadir, S. (2011). Mineralogy, micromorphology, geochemistry and genesis of a hydrothermal kaolinite deposit and altered Miocene host volcanites in the Hallaçlar area, Uşak, western Turkey. Clay Minerals, 46, 421–448.

    Article  Google Scholar 

  • Exley, C. S. (1976). Observations on the formation of kaolinite in the St. Austell Granite, Cornwall. Clay Minerals, 11, 51–63.

    Article  Google Scholar 

  • Fraser, G., Ellis, D., & Eggins, S. (1997). Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks. Geology, 25, 607–610.

    Article  Google Scholar 

  • Fujii, N., Kayabalı, İ., & Saka, A.H. (1995). Data Book of Ceramic Raw Materials of Selected Areas in Turkey. Monography Series No.1, General Directorate of Mineral Research and Exploration, 144 p.

  • Fulignati, P., Gioncada, A., & Sbrana, A. (1999). Rare-earth element (REE) behaviour in the alteration facies of the active magmatic-hydrothermal system of Vulcano (Aeolian Islands, Italy). Journal of Volcanology and Geothermal Research, 88, 325–342.

    Article  Google Scholar 

  • Georgieva, S., & Velinova, N. (2012). Alunite from the advanced argillic alterations in the Chelopech high sulphidation epithermal Cu-Au deposit, Bulgaria: Chemistry, morphology and genetic significance. Bulletin of Mineralogy Petrology and Geochemistry, 49, 17–31.

    Google Scholar 

  • Ghanem, H., & Jarrar, G. H. (2013). Geochemistry and petrogenesis of the 595 Ma shoshonitic Qunai monzogabbro, Jordan. Journal of African Earth Sciences, 88, 1–14.

    Article  Google Scholar 

  • Gifkins, C., Herrmann, W., & Large, R. (2005). Altered volcanic rocks: A guide to description and interpretation: Australia. Centre for Ore Deposits and Exploration Studies, University of Tasmania, 275 pp.

  • Gözler, M.Z., Cevher, F., Ergül, E., & Asutay, H.J. (1996). Orta Sakarya ve güneyinin jeolojisi, Mineral Research and Exploration (MTA) Report No. 9973 (Unpublished).

  • Grant, J. A. (1986). The isocon diagram – a simple solution to Gresens’ equation for metasomatic alteration. Economic Geology, 81, 1976–1982.

    Article  Google Scholar 

  • Grant, J. A. (2005). Isocon analysis: A brief review of the method and applications. Physics and Chemistry of the Earth, 30, 997–1004.

    Article  Google Scholar 

  • Gürsu, S., Göncüoglu, M. C., & Bayhan, H. (2004). Geology and geochemistry of the Pre-early Cambrian rocks in the Sandikli area: implications for the Pan-African evolution NW Gondwanaland. Gondwana Research, 7, 923–935.

    Article  Google Scholar 

  • Haines, S. H., & van der Pluijm, B. A. (2012). Patterns of mineral transformations in clay gouge, with examples from low-angle normal fault rocks in the western USA. Journal of Structural Geology, 43, 2–32.

    Article  Google Scholar 

  • Harnois, L. (1988). The CIW index: A new chemical index of weathering. Sedimentary Geology, 55, 319–322.

    Article  Google Scholar 

  • Hellman, P. L., Smith, R. E., & Henderson, P. (1979). Rare element investigation of the Cliefden outcrop, N.S.W., Australia. Contributions to Mineralogy and Petrology, 65, 155–164.

    Article  Google Scholar 

  • Inoue, A. (1995). Formation of clay minerals in hydrothermal environments. Pp. 268–329 in: Origin and Mineralogy of Clays: Clays and the Environment (B. Velde, editor). Springer, Berlin, Heidelberg.

  • Jele, N.L. (2013). The genesis of the quartz-sericite schists of the Toggekry Formation, Nondweni greenstone Belt, South Africa. School of Agricultural, Earth and Environmental Sciences, MSc thesis, University of KwaZulu-Natal, Durban, 159 pp.

  • Kadir, S., & Akbulut, A. (2009). Mineralogy, geochemistry and genesis of the Taşoluk kaolinite deposits in pre-Early Cambrian metamorphites and Neogene volcanites of Afyonkarahisar, Turkey. Clay Minerals, 44, 89–112.

    Article  Google Scholar 

  • Kadir, S., & Erkoyun, H. (2012). Genesis of the hydrothermal Karaçayır kaolinite deposit in Miocene volcanics and Palaeozoic metamorphic rocks of the Uşak-Güre basin, Western Turkey. Turkish Journal of Earth Sciences, 21, 1–26.

    Google Scholar 

  • Kadir, S., & Erkoyun, H. (2015). Characterization and distribution of fibrous tremolite and chrysotile minerals in the Eskişehir region of western Turkey. Clay Minerals, 50, 441–458.

    Article  Google Scholar 

  • Kadir, S., Erman, H., & Erkoyun, H. (2011). Mineralogical and geochemical characteristics and genesis of hydrothermal kaolinite deposits within Neogene volcanites, Kütahya (western Anatolia), Turkey. Clays and Clay Minerals, 59, 250–276.

    Article  Google Scholar 

  • Kadir, S., Külah, T., Eren, M., Önalgil, N., & Gürel, A. (2014). Mineralogical and geochemical characteristics and genesis of the Güzelyurt alunite–bearing kaolinite deposit within the Late Miocene Gördeles ignimbrite, central Anatolia, Turkey. Clays and Clay Minerals, 62, 477–499.

    Article  Google Scholar 

  • Kadir, S., Aydoğan, M. S., Elitok, Ö., & Helvacı, C. (2015). Composition and genesis of the nickel-chrome-bearing nontronite and montmorillonite in lateritized ultramafic rocks in the Muratdağı region (Uşak, western Anatolia), Turkey. Clays and Clay Minerals, 63, 163–184.

    Article  Google Scholar 

  • Kadir, S., Eren, M., İrkeç, T., Erkoyun, H., Külah, T., Önalgil, N., & Huggett, J. (2017). An approach to genesis of sepiolite and palygorskite in lacustrine sediments of the Lower Pliocene Sakarya and Porsuk Formations in the Sivrihisar and Yunusemre-Biçer regions (Eskişehir), Turkey. Clays and Clay Minerals, 65, 310–328.

    Article  Google Scholar 

  • Kämpf, N., Scheinost, A.C., & Schulze, D.G. (2000). Oxide Minerals. Pp. 125–168 in: Handbook of Soil Science (M.E. Sumner, editor). Boca Raton, Florida.

  • Karakaş, Z., Karakaş, Ö., & Varol, B. (2007). Sazak-Biçer (Sivrihisar KD’su) civarı Neojen (Miyosen-Pliyosen) göl basenindeki kiltaşlarının mineralojik incelemesi. Türkiye Jeoloji Bülteni, 50, 57–69.

    Google Scholar 

  • Karpov, G. A., Schroeder, P. A., & Nikolaeva, A. G. (2018). Geochemistry of rare elements in thermal waters of Uzon-Geyzernaya hydrothermal system (Kamchatka). Russian Geology and Geophyscics, 59, 925–934.

    Article  Google Scholar 

  • Keller, W. D. (1976). Scan electron micrographs of kaolins collected from diverse origin-III. influence of parent material on flint clays and flint-like clays. Clays and Clay Minerals, 24, 262–264.

    Article  Google Scholar 

  • Koçak, A. (1975). Mihalıççık Yarıkçı kaplıcası hidrojeolojik etüdü. MTA Report No. 5818, Ankara.

  • Külah, T., Kadir, S., Gürel, A., Eren, M., & Önalgil, N. (2014). Mineralogy, geochemistry, and genesis of mudstones in the upper Miocene Mustafapaşa member of the Ürgüp formation in the Cappadocia region, central Anatolia, Turkey. Clays and Clay Minerals, 62, 267–285.

    Article  Google Scholar 

  • Kulaksız, S. (1981). Sivrihisar KB sının jeolojisi. Hacettepe Üniversitesi Yerbilimleri Dergisi, 8, 103–124.

    Google Scholar 

  • Kunze, G.W. & Dixon, J.B. (1986). Pretreatment for mineralogical analysis. Pp. 91–100 in: Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods (2nd edition) (A. Klute, editor). American Society of Agronomy, Inc. and the Soil Science Society of America, Inc., Madison, Wisconsin, USA.

  • Lee, R.G., Dilles, J.H., Mazdab, F.K., & Wooden, J.L. (2009). Europium anomalies in zircon from granodiorite porphyry intrusions at the El Salvador porphyry copper deposit, Chile. The Geological Society of America, paper no 158-8.

  • Lerouge, C., Kunov, A., Fléhoc, C., Georgieva, S., Hikov, A., Lescuyer, J. L., Petrunov, R., & Veliova, N. (2006). Constraints of stable isotopes on the origin of alunite from advanced argillic alteration systems in Bulgaria. Journal of Geochemical Exploration, 90, 166–182.

    Article  Google Scholar 

  • López-Moro, F. J. (2012). EASYGRESGRANT – A Microsoft Excel spreadsheet to quantify volume changes and to perform mass-balance modeling in metasomatic systems. Computers and Geosciences, 39, 191–196.

    Article  Google Scholar 

  • MacLean, W. H., & Barrett, T. J. (1993). Lithogeochemical techniques using immobile elements. Journal of Geochemical Exploration, 48, 109–133.

    Article  Google Scholar 

  • Maulana, A., Christy, A. G., Ellis, D. J., & Bröcker, M. (2019). The distinctive tectonic and metamorphic history of the Barru Block, South Sulawesi, Indonesia: Petrological, geochemical and geochronological evidence. Journal of Asian Earth Sciences, 172, 170–189.

    Article  Google Scholar 

  • McFarlane, C. R. M., Mavrogenes, J. A., & Tomkins, A. G. (2007). Recognizing hydrothermal alteration through a granulite facies metamorphic overprint at the challenger Au deposit, South Australia. Chemical Geology, 243, 64–89.

    Article  Google Scholar 

  • Meunier, A. (1995). Hydrothermal alteration by veins. In B. Velde (Ed.), Origin and mineralogy of clays: clays and the environment (pp. 247–267). Berlin: Springer-Verlag.

  • Meunier, A. (2005). Clays. Berlin, Heidelberg: Springer Verlag.

    Google Scholar 

  • Meunier, A., & Velde, B. (2004). Illite, Origin, Evolution and Metamorphism. Springer-Verlag (p. 286). Berlin, Heidelberg: New York.

    Google Scholar 

  • Mongelli, G. (1997). Ce-anomalies in the textural components of Upper Cretaceous karst bauxites from the Apulian carbonate platform (southern Italy). Chemical Geology, 140, 69–79.

    Article  Google Scholar 

  • Moore, D. M., & Reynolds, R. C. (1989). X-ray Diffraction and the Identification and Analysis of Clay Minerals. New York: Oxford University Press.

    Google Scholar 

  • Mutlu, H., Sarıiz, K., & Kadir, S. (2006). Geochemistry and origin of the Şaphane alunite deposit, western Anatolia, Turkey. Ore Geology Review, 26, 39–50.

    Article  Google Scholar 

  • Nagasawa, K. (1978). Kaolin minerals. Pp. 189–219 in: Clays and Clay Minerals of Japan (T. Sudo and S. Shimoda, editors). Developments in Sedimentology, 26, Elsevier, Tokyo.

  • Neal, C. R., & Taylor, L. A. (1989). A negative Ce anomaly in a peridotite xenolith: Evidence for crustal recycling into the mantle or mantle metasomatism? Geochimica et Cosmochimica Acta, 53, 1035–1040.

    Article  Google Scholar 

  • Okay, A. I. (1989). Alpine-Himalayan blueschists. Annual Reviews of the Earth and Planetary Sciences, 17, 55–87.

    Article  Google Scholar 

  • Okay, A. I., Tansel, İ., & Tüysüz, O. (2001). Obduction, subduction and collision as reflected in the Upper Cretaceous–Lower Eocene sedimentary record of western Turkey. Geological Magazine, 138, 117–142.

    Article  Google Scholar 

  • Ömeroğlu Sayıt, I., Günal Türkmenoğlu, A., Sayın, Ş. A., & Demirci, C. (2018). Hydrothermal alteration products in the vicinity of the Ahırözü kaolin deposits, Mihalıççık-Eskişehir, Turkey. Clay Minerals, 53, 289–303.

    Article  Google Scholar 

  • Parry, W. T., Ballantyne, J. M., & Jacobs, D. C. (1984). Geochemistry of hydrothermal sericite from Roosevelt hot springs and the Tintic and Santa Rita porphyry copper systems. Economic Geology, 79, 72–86.

    Article  Google Scholar 

  • Planavsky, N., Rouxel, O., Bekker, A., Shapiro, R., Fralick, P., & Knudsen, A. (2009). Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans. Earth and Planetary Science Letters, 286, 230–242.

    Article  Google Scholar 

  • Santamarina, J.C., Klein, K.A., Palomino, A., & Guimaraes, M.S. (2002). Micro-scale aspects of chemical-mechanical coupling – interparticle forces and fabric. Pp. 47–64 in: Chemical Behaviour: Chemo-Mechanical Coupling from nano-Structure to Engineering Applications (C. Di Maio, T. Hueckel, and B. Loret, editors). Maratea, Balkema, Rotterdam, The Netherlands.

  • Sayın, S. A. (2007). Origin of kaolin deposits: Evidence from the Hisarcık (Emet-Kütahya) deposits, western Turkey. Turkish Journal of Earth Sciences, 16, 77–96.

    Google Scholar 

  • Sayın, Ş. A. (2016). Quartz-mica schist and gneiss hosted clay deposits within the Yenipazar (Yozgat, Central Anatolia) volcanogenic massive sulfide ore. Turkish Journal of Earth Sciences, 25, 81–101.

    Article  Google Scholar 

  • Schwertmann, U. (1993). Relation between iron oxides, soil color, and soil formation. Pp. 51–69 in: Soil Color (J.M. Bigham and E.J. Ciolkosz, editors). Soil Science Society of America, Madison, Wisconsin, USA.

  • Şengör, A. M. C., & Yılmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 181–241.

    Article  Google Scholar 

  • Şengör, A.M.C., Görür, N., & Şaroglu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. Pp. 227–264 in: Strike-Slip Deformation, Basin Formation and Sedimentation (K.T. Biddle, & N. Christie-Blick, editors). Society of Economic Paleontologists and Mineralogists (SEPM) Special Publication, 37.

  • Serna, E. (2014). Geochemistry and Genesis of Late Paleoproterozoic Banded Iron Formations and Metamorphosed Chemical Precipitates Spatially Associated with Pb-Zn Broken Hill-type Mineralization near the Broken Hill Deposit, Curnamona Province, Australia. Faculty of the Department of Geological Sciences Thomas Harriot College of Arts and Sciences, MSc thesis, East Carolina University, 113p.

  • Seyhan, İ. (1968). Mihalıççık (Eskişehir) Ahırözü-Üçbaşlı ve Sazak kaolenleri hakkında rapor. MTA Rapor No. 3922, 40s, Ankara.

  • Seyhan, İ. (1978). Türkiye kaolin yatakları ve hidrotermal cevherler arasında görülen ilişkiler. Jeoloji Mühendisliği Dergisi, 4, 27–31 Ankara.

    Google Scholar 

  • Spry, P. G., Adriana, H., Messerly, J. D., & Houk, R. S. (2007). Discrimination of metamorphic and metasomatic processes at the Broken Hill Pb-Zn-Ag deposit, Australia: rare element signatures of garnet-rich rocks. Economic Geology, 102, 471–494.

    Article  Google Scholar 

  • State Planning Organization of Turkey (2001). 8th Five-Year Development Plan, Mining Special Expert Commission Report, Volume 1, Industrial Sub-Commission Ceramic clays-Kaolin-Pyrophyllite-Wollastonite-Talc Group, Ankara, 224 pp. (http://ekutup.dpt.gov.tr/madencil/sanayiha/oik622.pdf)

  • Sverjensky, D. A. (1982). Europium equilibria in aqueous solution. Earth and Planetary Science Letters, 67, 70–78.

    Article  Google Scholar 

  • Taillefer, A., Soliva, R., Guillou-Frottier, L., Le Goff, E., Martin, G., & Seranne, M. (2017). Fault-related controls on upward hydrothermal flow: An integrated geological study of the Têt Fault System, Eastern Pyrénées (France). Geofluids, 2017, 1–19.

    Article  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The Continental Crust: Its Composition and Evolution. Oxford, UK: Blackwell 312 pp.

    Google Scholar 

  • Velde, B. (1985). Clay minerals: A Physico-chemical explanation of their occurrence. Development of Sedimentology, 40, Elsevier, New York, 427 pp.

  • Vidal, P. (1998). Géochimie. Série geosciences. Dunod, Paris.

  • Wang, W., Tang, J., Xu, W.-L., & Wang, F. (2015). Geochronology and geochemistry of Early Jurassic volcanic rocks in the Erguna Massif, northeast China: Petrogenesis and implications for the tectonic evolution of the Mongol–Okhotsk suture belt. Lithos, 218-219, 73–86.

    Article  Google Scholar 

  • Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.

    Article  Google Scholar 

  • Wilson, M. J. (1987). A Handbook of Determinative Methods in Clay Mineralogy. New York: Blackie and Son.

    Google Scholar 

  • Yalçın, H., & Bozkaya, Ö. (2003). Sivas batısındaki (Yıldızeli-Akdağ madeni) hidrotermal kaolinite ve I-S oluşumlarının mineralojisi ve jeokimyası. Türkiye Jeoloji Bülteni, 46, 1–23.

    Google Scholar 

  • Yılmaz, Y. (1981). Sakarya kıtası güney kenarının tektonik evrimi. Yerbilimleri, 1, 33–52.

    Google Scholar 

  • Yılmaz, Y., Genc, Ş. C., Gürer F., Bozcu, M., Yılmaz, K., Karacık, Z., Altunkaynak, Ş, & Elmas, A. (2000). When did the western Anatolian grabens begin to develop? Pp. 353–384 in: Tectonics and Magmatism in Turkey and the Surrounding Area (E. Bozkurt, J.A. Winchester, and J.D.A Piper, editors). Special Publications 173, Geological Society, London.

  • Zhou, L., Zhang, Z., Li, Y., You, F., Wu, C., & Zheng, C. (2013). Geological and geochemical characteristics in the paleo-weathering crust sedimentary type REE deposits, western Guizhou, China. Journal of Asian Earth Sciences, 73, 184–198.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are much indebted to anonymous reviewers for their extremely careful and constructive reviews which improved the quality of the paper significantly. The authors are also extremely grateful to the Associate Editor, Prakash B. Malla, Editor-in-Chief, Joseph W. Stucki, and Managing Editor, Kevin Murphy, for their insightful editorial comments and suggestions. This paper was presented at the 9th Mid-European Clay Conference, 2018, in Zagreb, Croatia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selahattİn Kadİr.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

(Received 4 May 2020; Revised 5 August 2020; Accepted: 5 August 2020; AE: Prakash B. Malla)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadİr, S., Erkoyun, H. & Külah, T. GENESIS OF THE YARIKÇI HYDROTHERMAL CLAY DEPOSIT WITHIN THE MESOZOIC METAMORPHIC UNITS, MİHALIÇÇIK, ESKİŞEHİR, TURKEY. Clays Clay Miner. 68, 553–579 (2020). https://doi.org/10.1007/s42860-020-00097-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-020-00097-3

Keywords

Navigation