Skip to main content

POLYMORPH AND POLYTYPE IDENTIFICATION FROM INDIVIDUAL MICA PARTICLES USING SELECTED AREA ELECTRON DIFFRACTION

Abstract

Dioctahedral micas are composed of two tetrahedral sheets and one octahedral sheet to form TOT or 2:1 layers. These minerals are widespread and occur with structures differing by (1) the layer stacking mode (polytypes), (2) the location of vacancies among non-equivalent octahedral sites (polymorphs), and (3) the charge-compensating interlayer cation and isomorphic substitutions. The purpose of the present study was to assess the potential of parallel-illumination electron diffraction (ED) to determine the polytype/polymorph of individual crystals of finely divided dioctahedral micas and to image their morphology. ED patterns were calculated along several zone axes close to the c*- and c-axes using the kinematical approximation for trans- and cis-vacant varieties of the four common mica polytypes (1M, 2M1, 2M2, and 3T). When properly oriented, all ED patterns have similar geometry, but differ by their intensity distribution over hk reflections of the zero-order Laue zone. Differences are enhanced for ED patterns calculated along the [001] zone axis. Identification criteria were proposed for polytype/polymorph identification, based on the qualitative distribution of bright and weak reflections. A database of ED patterns calculated along other zone axes was provided in case the optimum [001] orientation could not be found. Various polytype/polymorphs may exhibit similar ED patterns depending on the zone axis considered.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

References

  1. Amisano-Canesi, A., Chiari, G., Ferraris, G., Ivaldi, G., & Soboleva, S. V. (1994). Muscovite-3T and phengite-3T – crystal-structure and conditions of formation. European Journal of Mineralogy, 6, 489–496.

    Article  Google Scholar 

  2. Bailey, S.W. (1984) Classification and structure of the micas. Pp. 1–12 in: Micas (S.W. Bailey, editor). Reviews in Mineralogy, 13, Mineralogical Society of America. Chantilly, Virginia, USA, 725 pp.

  3. Bailey, S.W. (1988) Hydrous Phyllosilicates (Exclusive of Micas). Reviews in Mineralogy, 19. Mineralogical Society of America, Chantilly, Virginia, USA, 725 pp.

  4. Beermann, T., & Brockamp, O. (2005). Structure and analysis of montmorillonite crystallites by convergent–beam electron diffraction. Clay Minerals, 40, 1–13.

    Article  Google Scholar 

  5. Drits, V.A. (1987) Electron Diffraction and High–resolution Electron Microscopy of Mineral Structures. Spring–Verlag, NewYork, 304 pp.

  6. Drits, V. A., & McCarty, D. K. (1996). The nature of diffraction effects from illite and illite-smectite consisting of interstratified trans-vacant and cis-vacant 2:1 layers: A semiquantitative technique for determination of layer-type content. American Mineralogist, 81, 852–863.

    Article  Google Scholar 

  7. Drits, V. A., & Sakharov, B. A. (2004). Potential problems in the interpretation of powder X-ray diffraction patterns from fine-dispersed 2M1 and 3T dioctahedral micas. European Journal of Mineralogy, 16, 99–110.

    Article  Google Scholar 

  8. Drits, V. A., Plançon, A., Sakharov, B. A., Besson, G., Tsipursky, S. I., & Tchoubar, C. (1984). Diffraction effects calculated for structural models of K-saturated montmorillonite containing different types of defects. Clay Minerals, 19, 541–562.

    Article  Google Scholar 

  9. Drits, V. A., Weber, F., Salyn, A. L., & Tsipursky, S. I. (1993). X-ray identification of one-layer illite varieties: Application to the study of illites around uranium deposits of Canada. Clays and Clay Minerals, 41, 389–398.

    Article  Google Scholar 

  10. Drits, V. A., Lindgreen, H., Salyn, A. L., Ylagan, R. F., & McCarty, D. K. (1998). Semiquantitative determination of trans-vacant and cis-vacant 2:1 layers in illites and illite-smectites by thermal analysis and X-ray diffraction. American Mineralogist, 83, 1188–1198.

    Article  Google Scholar 

  11. Drits, V. A., Ivanovskaya, T. A., Sakharov, B. A., Zvyagina, B. B., Derkowski, A., Gor’kova, N. V., Pokrovskaya, E. V., Savichev, A. T., & Zaitseva, T. S. (2010a). Nature of the structural and crystal-chemical heterogeneity of the Mg-rich glauconite (Riphean, Anabar uplift). Lithology and Mineral Resources, 45, 555–576.

    Article  Google Scholar 

  12. Drits, V. A., Zviagina, B. B., McCarty, D. K., & Salyn, A. L. (2010b). Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite. American Mineralogist, 95, 348–361.

    Article  Google Scholar 

  13. Emmerich, K., Madsen, F. T., & Kahr, G. (1999). Dehydroxylation behavior of heat-treated and steam-treated homoionic cis-vacant montmorillonites. Clays and Clay Minerals, 47, 591–604.

    Article  Google Scholar 

  14. Gaillot, A.-C., Drits, V. A., Veblen, D. R., & Lanson, B. (2011). Polytype and polymorph identification of finely divided aluminous dioctahedral mica individual crystals with SAED. Kinematical and dynamical electron diffraction. Physics and Chemistry of Minerals, 38, 435–448.

    Article  Google Scholar 

  15. Gemmi, M., & Nicolopoulos, S. (2007). Structure solution with three-dimensional sets of precessed electron diffraction intensities. Ultramicroscopy, 107, 403–494.

    Article  Google Scholar 

  16. Gjonnes, J., Hansen, V., Berg, B. S., Runde, P., Cheng, Y. E., Gjonnes, K., Dorset, D. L., & Gilmore, C. J. (1998). Structure model for the phase AlmFe derived from three-dimensional electron diffraction intensity data collected by a precession technique. Comparison with convergent-beam diffraction. Acta Crystallographica, A54, 306–319.

    Article  Google Scholar 

  17. Kameda, J., Miyawaki, R., Kitagawa, R., & Kogure, T. (2007). XRD and HRTEM analyses of stacking structures in sudoite, di-trioctahedral chlorite. American Mineralogist, 92, 1586–1592.

    Article  Google Scholar 

  18. Kantorowicz, J. D. (1990). The influence of variations in illite morphology on the permeability of Middle Jurassic Brent group sandstones. Marine & Petroleum Geology, 7, 66–74.

    Article  Google Scholar 

  19. Kogure, T., & Banfield, J. F. (1998). Direct identification of the six polytypes of chlorite characterized by semi-random stacking. American Mineralogist, 83, 925–930.

    Article  Google Scholar 

  20. Kogure, T., & Drits, V. A. (2010). Structural change in celadonite and cis-vacant illite by electron radiation in TEM. Clays and Clay Minerals, 58, 522–531.

    Article  Google Scholar 

  21. Kogure, T., & Kameda, J. (2008). High-resolution TEM and XRD simulation of stacking disorder in 2:1 phyllosilicates. Zeitschrift für Kristallographie, 223, 69–75.

    Google Scholar 

  22. Kogure, T., & Nespolo, M. (1999). First occurrence of a stacking sequence including (+60°, 180°) rotations in Mg-rich annite. Clays and Clay Minerals, 47, 784–792.

    Article  Google Scholar 

  23. Kogure, T., Kameda, J., & Drits, V. A. (2008). Stacking faults with 180° layer rotation in celadonite, an Fe- and Mg-rich dioctahedral mica. Clays and Clay Minerals, 56, 612–621.

    Article  Google Scholar 

  24. Lanson, B., Beaufort, D., Berger, G., Baradat, J., & Lacharpagne, J.-C. (1996). Illitization of diagenetic kaolinite-to-dickite conversion series: Late-stage diagenesis of the lower Permian Rotliegend sandstone reservoir, offshore of The Netherlands. Journal of Sedimentary Research, 66, 501–518.

    Google Scholar 

  25. Lanson, B., Beaufort, D., Berger, G., Bauer, A., Cassagnabere, A., & Meunier, A. (2002). Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: A review. Clay Minerals, 37, 1–22.

    Article  Google Scholar 

  26. Laverret, E., Patrier Mas, P., Beaufort, D., Kister, P., Quirt, D., Bruneton, P., & Clauer, N. (2006). Mineralogy and geochemistry of the host-rock alterations associated with the Shea creek unconformity-type uranium deposits (Athabasca basin, Saskatchewan, Canada). Part 1. Spatial variation of illite properties. Clays and Clay Minerals, 54, 275–294.

    Article  Google Scholar 

  27. Liang, J. J., Hawthorne, F. C., & Swainson, I. P. (1998). Triclinic muscovite: X-ray diffraction, neutron diffraction and photo-acoustic FTIR spectroscopy. The Canadian Mineralogist, 36, 1017–1027.

    Google Scholar 

  28. McCarty, D. K., & Reynolds Jr., R. C. (1995). Rotationally disordered illite/smectite in Paleozoic K-bentonites. Clays and Clay Minerals, 43, 271–284.

    Article  Google Scholar 

  29. Moeck, P., & Rouvimov, S. (2010). Precession electron diffraction and its advantages for structural fingerprinting in the transmission electron microscope. Zeitschift für Kristallographie, 225, 110–124.

    Google Scholar 

  30. Morris, K. A., & Shepperd, C. M. (1982). The role of clay minerals in influencing porosity and permeability in the Bridport sands of Wyth Farm, Dorset. Clay Minerals, 17, 41–54.

    Article  Google Scholar 

  31. Mottana, A., Sassi, F.P., Thompson, J.B., Jr, & Guggenheim, S. (2004) Micas: Crystal Chemistry and Metamorphic Petrology. Pp. 499. Mineralogical Society of America, Chantilly, Virginia, USA.

  32. Nicolopoulos, S., Morniroli, J.-P., & Gemmi, M. (2007). From powder diffraction to structure resolution of nanocrystals by precession electron diffraction. Zeitschift für Kristallographie, Supplement issue, 26, 183–188.

  33. Pallatt, N., Wilson, J., & McHardy, B. (1984). The relationship between permeability and the morphology of diagenetic illite in reservoir rocks. Journal of Petroleum Technology, 36, 2225–2227.

    Article  Google Scholar 

  34. Patrier, P., Beaufort, D., Laverret, E., & Bruneton, P. (2003). High-grade diagenetic dickite and 2M1 illite from the middle Proterozoic Kombolgie formation (Northern Territory, Australia). Clays and Clay Minerals, 51, 102–116.

    Article  Google Scholar 

  35. Pevear, D. R. (1999). Illite and hydrocarbon exploration. Proceedings of the National Academy of Sciences of the United States of America, 96, 3440–3446.

    Article  Google Scholar 

  36. Rex, R. W. (1964). Authigenic kaolinite and mica as evidence for phase equilibria at low temperature. Clays and Clay Minerals, 13, 95–104.

    Article  Google Scholar 

  37. Stadelmann, P. (1999). Electron Microscopy Suite, Java version (JEMS). Switzerland: CIME-EMPL.

    Google Scholar 

  38. Vincent, R., & Midgley, P. A. (1994). Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy, 53, 271–282.

    Article  Google Scholar 

  39. Wilson, M. J., Wilson, L., & Patey, I. (2014). The influence of individual clay minerals on formation damage of reservoir sandstones: A critical review with some new insights. Clay Minerals, 49, 147–164.

    Article  Google Scholar 

  40. Ylagan, R. F., Altaner, S. P., & Pozzuoli, A. (2000). Reaction mechanisms of smectite illitization associated with hydrothermal alteration from ponza island. Clays and Clay Minerals, 48, 610–631.

    Article  Google Scholar 

  41. Zhoukhlistov, A. P., Zvyagin, B. B., Soboleva, S. V., & Fedotov, A. F. (1973). The crystal structure of the dioctahedral mica 2M2 determined by high voltage electron diffraction. Clays and Clay Minerals, 21, 465–470.

    Article  Google Scholar 

  42. Zhoukhlistov, A. P., Zvyagin, B. B., Soboleva, S. V., & Fedotov, A. F. (1974). Structure of a dioctahedral mica 2M2 according to high-voltage electron diffraction data (in Russian). Doklady Akademii Nauk SSSR, 219, 704–707.

    Google Scholar 

  43. Zviagina, B. B., Sakharov, B. A., & Drits, V. A. (2007). X-ray diffraction criteria for the identification of trans- and cis-vacant varieties of dioctahedral micas. Clays and Clay Minerals, 55, 467–480.

    Article  Google Scholar 

Download references

Acknowledgments

Daniel Beaufort (IC2MP, Poitiers – France) is thanked for providing the 1M illite and 2M1 muscovite samples. Funded by the French Contrat Plan État-Région and the European Regional Development Fund of Pays de la Loire, the CIMEN Electron Microscopy Center in Nantes is greatly acknowledged. ISTerre is part of Labex OSUG@2020 (ANR10 LABX56). Comments by two anonymous reviewers improved and clarified the initial manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anne-Claire Gaillot.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

(Received 9 December 2019; revised 8 April 2020; AE: Christian Bautista)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gaillot, AC., Drits, V.A. & Lanson, B. POLYMORPH AND POLYTYPE IDENTIFICATION FROM INDIVIDUAL MICA PARTICLES USING SELECTED AREA ELECTRON DIFFRACTION. Clays Clay Miner. 68, 334–346 (2020). https://doi.org/10.1007/s42860-020-00075-9

Download citation

Keywords

  • Cis-vacant
  • Dioctahedral mica
  • Electron diffraction
  • Illite
  • Muscovite
  • Polymorph
  • Polytype
  • Trans-vacant
  • Zone-axis orientation