Skip to main content

Advertisement

Log in

CLAY-BASED BIOHYBRID MATERIALS FOR BIOMEDICAL AND PHARMACEUTICAL APPLICATIONS

  • Published:
Clays and Clay Minerals

ABSTRACT

Clays have traditionally been linked to health care, being used for centuries in the fight against infections and diseases. Similarly, biohybrids produced by combinations of clays and biological species through ‘bottom-up’ approaches have been evaluated over the past decade for biomedical and pharmaceutical uses. These biohybrids show interesting features such as biocompatibility and biodegradability which make them suitable for healthcare applications. The aim of the present communication was to review recent research contributions describing progress and the role of biohybrid materials based on clays in biomedicine and pharmacy disciplines. Emphasis will be on the authors’ own experience of this topic, particularly on aspects related to controlled drug-delivery systems, adjuvants of vaccines, and vectors for non-viral gene transfection. Bionanocomposites offer several advantages for use in the design of new and efficient pharmacological formulations for cutaneous and oral administration. In these systems, the drug is typically entrapped in the clay and protected by a biopolymer matrix, and both components contribute to a gradual release of the drug. Clay-based hybrids have also shown their efficacy in vaccines as they can act as nanocarriers of viral particles, due to the biomimetic interface created on the clay surface after adsorption of suitable biomolecules such as phospholipids, while the clay acts as an adjuvant to increase the efficacy of the vaccine. Finally, a new application of clays as non-viral vectors for controlled gene delivery is attracting increasing interest in the treatment of diverse diseases; clays such as sepiolite have demonstrated their ability to act as nanocarriers of nucleic acids and facilitate their transfection in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aguzzi, C., Cerezo, P., Viseras, C., & Caramella, C. (2007). Use of clays as drug delivery systems: Possibilities and limitations. Applied Clay Science, 36, 22–36.

    Google Scholar 

  • Aguzzi, C., Cerezo, P., Sandri, G., Ferrari, F., Rossi, S., Bonferoni, C., Caramella, C., & Viseras, C. (2014). Intercalation of tetracycline into layered clay mineral material for drug delivery purposes. Materials Technology, 29, B96-B99.

    Google Scholar 

  • Alcantara, A.C.S., Aranda, P., Darder, M., & Ruiz-Hitzky, E. (2010). Bionanocomposites based on alginate-zein/layered double hydroxide materials as drug delivery systems. Journal of Materials Chemistry, 20, 9495–9504.

    Google Scholar 

  • Allègre, J. (2012). Les silicates d’alumine (argiles) en therapeutique. Une pratique coutumière ancienne relayée dans la médecine moderne. PhD Thesis, Université Paris XIII, Paris.

    Google Scholar 

  • Ambre, A.H., Katti, D.R., & Katti, K.S. (2015). Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering. Journal of Biomedical Materials Research Part A, 103, 2077–2101.

    Google Scholar 

  • Aranda, P. and Ruiz-Hitzky, E. (2018). Immobilization of Nanoparticles on Fibrous Clay Surfaces: Towards Promising Nanoplatforms for Advanced Functional Applications. The Chemical Record, 18, 1125−1137.

    Google Scholar 

  • Aranda, P., He, J., Darder, M., Fernández-Saiz, P., Monte-Serrano, M., Charlet, L., & Ruiz-Hitzky, E. (2014). Hydroxypropylmethylcellulose/gentamicin-montmorillonite bionanocomposite films with antimicrobial activity. Proceedings of the EU COST Action MP1202: HINT Scientific Workshop on Applications of Hybrid Materials Interfaces, Istanbul.

  • Aranda, P., Lo Dico, G., Lisuzzo, L., Wicklein, B., del Real, G., Lazzara, G., & Ruiz-Hitzky, E. (2018). Sepiolite-halloysite nanoarchitectures and their role in functional nanocomposite. ACS Proceedings of the 255th National Meeting & Exposition of the American Chemical Society, New Orleans.

    Google Scholar 

  • Ariga, K., Hill, J.P., Lee, M.V., Vinu, A., Charvet, R., & Acharya, S. (2008). Challenges and breakthroughs in recent research on self-assembly. Science and Technology of Advanced Materials, 9, #014109.

    Google Scholar 

  • Aufreiter, S., Hancock, R.G.V., Mahaney, W.C., Stambolic-Robb, A., & Sanmugadas, K. (1997). Geochemistry and mineralogy of soils eaten by humans. International Journal of Food Sciences and Nutrition, 48, 293–305.

    Google Scholar 

  • Carretero, M.I. and Pozo, M. (2009). Clay and non-clay minerals in the pharmaceutical industry Part I. Excipients and medical applications. Applied Clay Science, 46, 73–80.

    Google Scholar 

  • Carretero, M.I. and Pozo, M. (2010). Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II. Active ingredients. Applied Clay Science, 47, 171–181.

    Google Scholar 

  • Castro-Smirnov, F. A. (2014). Physicochemical characterization of DNA-based bionanocomposites using nanofibrous clay minerals. Biological applications. PhD Thesis, Université Paris XI, Versailles (France).

  • Castro-Smirnov, F.A., Piétrement, O., Aranda, P., Bertrand, J.-R., Ayache, J., Le Cam, E., Ruiz-Hitzky, E., & Lopez, B.S. (2016). Physical interactions between DNA and sepiolite nanofibers, and potential application for DNA transfer into mammalian cells. Scientific Reports, 6, 36341 (14p).

    Google Scholar 

  • Castro-Smirnov, F.A., Ayache, J., Bertrand, J.-R., Dardillac, E., Le Cam, E., Piétrement, O., Aranda, P., Ruiz-Hitzky, E., & Lopez, B.S. (2017a). Cellular uptake pathways of sepiolite nanofibers and DNA transfection improvement. Scientific Reports, 7, 5586 (10p).

  • Castro-Smirnov, F.A., Rodriguez-Hoyos, O.E., Guzmán-Martínez, F., Lopez, B.S., Piétrement, O., Ayache, J., le Cam, E., Bertrand, J.-R., Aranda, P., & Ruiz-Hitzky, E. (2017b). New biohybrid materials as nanocarriers of nucleic acids and their biotechnological applications. Biotecnología Aplicada, 34, 3511–3514.

  • Chen, D. and Kristensen, D. (2009). Opportunities and challenges of developing thermostable vaccines. Expert Review of Vaccines, 8, 547–557.

    Google Scholar 

  • Choy, J.H., Oh, J.M., Park, M., Sohn, K.M., & Kim, J.W. (2004). Inorganic–Biomolecular Hybrid Nanomaterials as a Genetic Molecular Code System. Advanced Materials, 16, 1181–1184.

    Google Scholar 

  • Choy, J.-H., Kwak, S.-Y., Jeong, Y.-J., & Park, J.-S. (2000). Inorganic Layered Double Hydroxides as Nonviral Vectors. Angewandte Chemie International Edition, 39, 4041–4045.

    Google Scholar 

  • Choy, J.-H., Choi, S.-J., Oh, J.-M., & Park, T. (2007). Clay minerals and layered double hydroxides for novel biological applications. Applied Clay Science, 36, 122–132.

    Google Scholar 

  • Clapp, T., Siebert, P., Chen, D., & Jones Braun, L. (2011). Vaccines with aluminum-containing adjuvants: Optimizing vaccine efficacy and thermal stability. Journal of Pharmaceutical Sciences, 100, 388–401.

    Google Scholar 

  • Costantino, U., Nocchetti, M., Tammaro, L., & Vittoria, V. (2012). Modified Hydrotalcite-Like Compounds as Active Fillers of Biodegradable Polymers for Drug Release and Food Packaging Applications. Recent Patents on Nanotechnology, 6, 218–230.

    Google Scholar 

  • Darder, M., López-Blanco, M., Aranda, P., Leroux, F. and Ruiz-Hitzky, E. (2005). Bio-Nanocomposites Based on Layered Double Hydroxides. Chemistry of Materials, 17, 1969–1977.

    Google Scholar 

  • Darder, M., Aranda, P., & Ruiz-Hitzky, E. (2007). Bionanocomposites: A new concept of ecological, bioinspired, and functional hybrid materials. Advanced Materials, 19, 1309–1319.

    Google Scholar 

  • Ghadiri, M., Chrzanowski, W., & Rohanizadeh, R. (2015). Biomedical applications of cationic clay minerals. RSC Advances, 5, 29467–29481.

    Google Scholar 

  • Giani, G., Fedi, S., & Barbucci, R. (2012). Hybrid Magnetic Hydrogel: A Potential System for Controlled Drug Delivery by Means of Alternating Magnetic Fields. Polymers, 4, 1157–1169.

    Google Scholar 

  • He, J. (2013). (Bio)nanocomposites for water treatment of arsenic/gentamincin contaminated water or medicine use. PhD Thesis, l’Université Joseph Fourier, Grenoble.

    Google Scholar 

  • Heegaard, P., Dedieu, L., Johnson, N., Le Potier, M.-F., Mockey, M., Mutinelli, F., Vahlenkamp, T., Vascellari, M., & Sørensen, N. (2011). Adjuvants and delivery systems in veterinary vaccinology: current state and future developments. Archives of Virology, 156, 183–202.

    Google Scholar 

  • https://en.wikipedia.org/wiki/Biblical_and_Quranic_narratives. (2018) Accessed April 2018.

  • Kelly, H.M., Deasy, P.B., Ziaka, E., & Claffey, N. (2004). Formulation and preliminary in vivo dog studies of a novel drug delivery system for the treatment of periodontitis. International Journal of Pharmaceutics, 274, 167–183.

    Google Scholar 

  • Khan, A.I., Lei, L., Norquist, A.J., & O'Hare, D. (2001). Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide. Chemical Communications, 2342–2343.

  • Knezevich, M. (1999). Geophagy as a therapeutic mediator of endoparasitism in a free-ranging group of rhesus macaques (Macaca mulatta). American Journal of Primatology, 44, 71–82.

    Google Scholar 

  • Liewig, N., Rautureau, M., & Gomes, C. (2012). Les argiles et la santé humaine: d'hier à aujourd'hui. Etude et Gestion des Sols, 19, 267–277.

    Google Scholar 

  • Lisuzzo, L. (2017). Halloysite, sepiolite and cellulose nano fibers based bio-hybrid material for drug delivery. Master Thesis, Università degli Studi de Palermo, Palermo.

    Google Scholar 

  • Lisuzzo, L., Aranda, P., Wicklein, B., Real, G.D., Lazzara, G., & Ruiz-Hitzky, E. (2018). Halloysite-sepiolite-nanocellulose heterostructured films for drug-delivery applications (in preparation).

    Google Scholar 

  • Liu, S., Wu, P., Yu, L., Li, L., Gong, B., Zhu, N., Dang, Z., & Yang, C. (2017). Preparation and characterization of organo-vermiculite based on phosphatidylcholine and adsorption of two typical antibiotics. Applied Clay Science, 137, 160–167.

    Google Scholar 

  • Luckham, P.F. and Rossi, S. (1999). The colloidal and rheological properties of bentonite suspensions. Advances in Colloid and Interface Science, 82, 43–92.

    Google Scholar 

  • Lvov, Y. and Abdullayev, E. (2013). Functional polymer–clay nanotube composites with sustained release of chemical agents. Progress in Polymer Science, 38, 1690–1719.

    Google Scholar 

  • Lvov, Y., Wang, W., Zhang, L., & Fakhrullin, R. (2015). Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds. Advanced Materials, 28, 1227–1250.

    Google Scholar 

  • Mahaney, W.C., Milner, M.W., Aufreiter, S., Hancock, R.G.V., Wrangham, R., & Campbell, S. (2005). Soils Consumed by Chimpanzees of the Kanyawara Community in the Kibale Forest, Uganda. International Journal of Primatology, 26, 1375–1398.

    Google Scholar 

  • Merino, D., Ollier, R., Lanfranconi, M., & Alvarez, V. (2016). Preparation and characterization of soy lecithin-modified bentonites. Applied Clay Science, 127-128, 17–22.

    Google Scholar 

  • Mizrahy, S. and Peer, D. (2012). Polysaccharides as building blocks for nanotherapeutics. Chemical Society Reviews, 41, 2623–2640.

    Google Scholar 

  • Mousa, M.H., Dong, Y., & Davies, I.J. (2016). Recent advances in bionanocomposites: Preparation, properties, and applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 65, 225–254.

    Google Scholar 

  • Nagy, K., Bíró, G., Berkesi, O., Benczédi, D., Ouali, L., & Dékány, I. (2013). Intercalation of lecithins for preparation of layered nanohybrid materials and adsorption of limonene. Applied Clay Science, 72, 155–162.

    Google Scholar 

  • Nitta, K.S. and Numata, K. (2013). Biopolymer-Based Nanoparticles for Drug/Gene Delivery and Tissue Engineering. International Journal of Molecular Sciences, 14, 1629–1654.

    Google Scholar 

  • Oh, J.-M., Park, D.-H., Choi, S.-J., & Choy, J.-H. (2012). LDH Nanocontainers as Bio-Reservoirs and Drug Delivery Carriers. Recent Patents on Nanotechnology, 6, 200–217.

    Google Scholar 

  • Olmo, N., Lizarbe, M.A., & Gavilanes, J.G. (1987). Biocompatibility and degradability of sepiolite-collagen complex. Biomaterials, 8, 67–69.

    Google Scholar 

  • Pacwa-Plociniczak, M., Plaza, G.A., Piotrowska-Seget, Z. and Cameotra, S.S. (2011). Environmental applications of biosurfactants: Recent advances. International Journal of Molecular Sciences, 12, 633–654.

    Google Scholar 

  • Park, D.-H., Hwang, S.-J., Oh, J.-M., Yang, J.-H., & Choy, J.-H. (2013). Polymer–inorganic supramolecular nanohybrids for red, white, green, and blue applications. Progress in Polymer Science, 38, 1442–1486.

    Google Scholar 

  • Patil, V., Venkatesh, M.D., Krishnappa, G.K., & Srinivasa Gouda, R.N. (2004). Immune response of calves to bentonite and alum adjuvanted combined vaccine against haemorrhagic septicaemia and black quarter. Indian Journal of Animal Sciences, 74, 845–847.

    Google Scholar 

  • Piétrement, O., Castro-Smirnov, F. A., Le Cam, E., Aranda, P., Ruiz-Hitzky, E., & Lopez, B.S. (2018). Sepiolite as a New Nanocarrier for DNA Transfer into Mammalian Cells: Proof of Concept, Issues and Perspectives. The Chemical Record, 18, 849–857.

    Google Scholar 

  • Plant, A.L. (1999). Supported hybrid bilayer membranes as rugged cell membrane mimics. Langmuir, 15, 5128–5135.

    Google Scholar 

  • Rapacz-Kmita, A., Stodolak-Zych, E., Dudek, M., Gajek, M., & Ziąbka, M. (2017). Magnesium aluminium silicate–gentamicin complex for drug delivery systems. Journal of Thermal Analysis and Calorimetry, 127, 871–880.

    Google Scholar 

  • Rautureau, M. (2010). Argiles et santé: Propriétés et thérapies, Lavoisier, Paris.

    Google Scholar 

  • Rautureau, M., Figueiredo Gomes, C d S Liewig, N., & Katouzian-Safadi, M. (2017). Clays and Health. Properties and Therapeutic Uses, Springer.

    Google Scholar 

  • Rebitski, E.P., Aranda, P., Darder, M., Carraro, R., & Ruiz-Hitzky, E. (2018). Intercalation of metformin into montmorillonite. Dalton Transactions, 47, 3185–3192.

    Google Scholar 

  • Ribeiro, L.N.M., Alcântara, A.C.S., Darder, M., Aranda, P., Herrmann, P.S.P., Araújo-Moreira, F.M., García-Hernández, M., & Ruiz-Hitzky, E. (2014a). Bionanocomposites containing magnetic graphite as potential systems for drug delivery. International Journal of Pharmaceutics, 477, 553–563.

    Google Scholar 

  • Ribeiro, L.N.M., Alcântara, A.C.S., Darder, M., Aranda, P., Araújo-Moreira, F.M., & Ruiz-Hitzky, E. (2014b). Pectin-coated chitosan–LDH bionanocomposite beads as potential systems for colon-targeted drug delivery. International Journal of Pharmaceutics, 463, 1–9.

    Google Scholar 

  • Rives, V., del Arco, M., & Martín, C. (2014). Intercalation of drugs in layered double hydroxides and their controlled release: A review. Applied Clay Science, 88-89, 239–269.

    Google Scholar 

  • Ruiz-Hitzky, E. and Van Meerbeek, A. (2006). Clay mineral- and organoclay–polymer nanocomposite. Handbook of Clay Science (F. Bergaya, B.K.G. Theng and G. Lagaly, editors). Developments in Clay Science. Elsevier, Amsterdam.

  • Ruiz-Hitzky, E., Aranda, P., & Darder, M. (2008). Bionanocomposites. Pp. 1–28 in: Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Hoboken, NJ.

    Google Scholar 

  • Ruiz-Hitzky, E., Darder, M., & Aranda, P. (2009a). Progress in bionanocomposite materials. Pp. 149–189 in: Annual Review of Nanoresearch, 3 (Q. Z. G. Cao and C. J. Brinker, editors). World Scientific Publishing, Singapore.

    Google Scholar 

  • Ruiz-Hitzky, E., Darder, M., Aranda, P., Martin del Burgo, M.Á., & del Real, G. (2009b). Bionanocomposites as new carriers for influenza vaccines. Advanced Materials, 21, 4167–4171.

    Google Scholar 

  • Ruiz-Hitzky, E., Aranda, P., Darder, M., & Rytwo, G. (2010). Hybrid materials based on clays for environmental and biomedical applications. Journal of Materials Chemistry, 20, 9306–9321.

    Google Scholar 

  • Ruiz-Hitzky, E., Darder, M., Aranda, P., & Ariga, K. (2010). Advances in Biomimetic and Nanostructured Biohybrid Materials. Advanced Materials, 22, 323–336.

    Google Scholar 

  • Ruiz-Hitzky, E., Aranda, P., Darder, M., & Ogawa, M. (2011). Hybrid and biohybrid silicate based materials: molecular vs. block-assembling bottom-up processes. Chemical Society Reviews, 40, 801–828.

    Google Scholar 

  • Rytwo, G., Mendelovits, A., Eliyahu, D., Pitcovski, J., & Aizenshtein, E. (2010). Adsoption of two vaccine-related proteins to montmorillonite and organo-montmorillonite. Applied Clay Science, 50, 569–575.

    Google Scholar 

  • Stambolic-Robb, A. (1997). Geophagy among free-ranging Sumatran orangutans (Pongo pygmaeus abelii) of Gunung Leuser National Park and ex-captive bornean orang-utans (Pongo pygmaeus pygmaeaus) of Sungai Wain Forest, Indonesia. Master Thesis, York University, Ontario.

    Google Scholar 

  • Sun, T. and Qing, G. (2011). Biomimetic Smart Interface Materials for Biological Applications. Advanced Materials, 23, H57-H77.

    Google Scholar 

  • Tingaut, P., Zimmermann, T., & Lopez-Suevos, F. (2010). Synthesis and Characterization of Bionanocomposites with Tunable Properties from Poly(lactic acid) and Acetylated Microfibrillated Cellulose. Biomacromolecules, 11, 454–464.

    Google Scholar 

  • Viseras, C., Cerezo, P., Sanchez, R., Salcedo, I., & Aguzzi, C. (2010). Current challenges in clay minerals for drug delivery. Applied Clay Science, 48, 291–295.

    Google Scholar 

  • Wakibara, J.V., Huffman, M.A., Wink, M., Reich, S., Aufreiter, S., Hancock, R.G.V., Sodhi, R., Mahaney, W.C., & Russel, S. (2001). The Adaptive Significance of Geophagy for Japanese Macaques (Macaca fuscata) at Arashiyama, Japan. International Journal of Primatology, 22, 495–520.

    Google Scholar 

  • Wang, Q., Mynar, J.L., Yoshida, M., Lee, E., Lee, M., Okuro, K., Kinbara, K., & Aida, T. (2010). High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature, 463, 339.

    Google Scholar 

  • Wicklein, B., Darder, M., Aranda, P., & Ruiz-Hitzky, E. (2010). Bio-organoclays based on phospholipids as immobilization hosts for biological species. Langmuir, 26, 5217–5225.

    Google Scholar 

  • Wicklein, B., Darder, M., Aranda, P., & Ruiz-Hitzky, E. (2011). Phospholipid-sepiolite biomimetic interfaces for the immobilization of enzymes. ACS Applied Materials and Interfaces, 3, 4339–4348.

    Google Scholar 

  • Wicklein, B., Martín del Burgo, M.Á., Yuste, M., Darder, M., Escrig Llavata, C., Aranda, P., Ortín, J., del Real, G., & Ruiz-Hitzky, E. (2012). Lipid-Based Bio-Nanohybrids for Functional Stabilisation of Influenza Vaccines. European Journal of Inorganic Chemistry, 2012, 5186–5191.

    Google Scholar 

  • Wicklein, B., Aranda, P., Ruiz-Hitzky, E., & Darder, M. (2013). Hierarchically structured bioactive foams based on polyvinyl alcohol-sepiolite nanocomposites. Journal of Materials Chemistry B, 1, 2911–2920.

    Google Scholar 

  • Wicklein, B., Darder, M., Aranda, P., Martín del Burgo, M.A., del Real, G., Esteban, M., & Ruiz-Hitzky, E. (2016). Clay-lipid nanohybrids: towards influenza vaccines and beyond. Clay Minerals, 51, 529–538.

    Google Scholar 

  • Wilharm, G., Lepka, D., Faber, F., Hofmann, J., Kerrinnes, T., & Skiebe, E. (2010). A simple and rapid method of bacterial transformation. Journal of Microbiological Methods, 80, 215–216.

    Google Scholar 

  • Williams, L.B. (2018). Geomimicry: harnessing the antibacterial action of clays. Clay Minerals, 52, 1–24.

    Google Scholar 

  • Williams, L.B. & Haydel, S.E. (2010). Evaluation of the medicinal use of clay minerals as antibacterial agents. International Geology Review, 52, 745–770.

    Google Scholar 

  • Yao, H.B., Tan, Z.H., Fang, H.Y., & Yu, S.H. (2010). Artificial Nacre-like Bionanocomposite Films from the Self-Assembly of Chitosan–Montmorillonite Hybrid Building Blocks. Angewandte Chemie International Edition, 49, 10127–10131.

    Google Scholar 

  • Yao, K., Huang, S., Tang, H., Xu, Y., Buntkowsky, G., Berglund, L.A., & Zhou, Q. (2017). Bioinspired Interface Engineering for Moisture Resistance in Nacre-Mimetic Cellulose Nanofibrils/Clay Nanocomposites. ACS Applied Materials & Interfaces, 9, 20169–20178.

    Google Scholar 

  • Yoshida, N. & Sato, M. (2009). Plasmid uptake by bacteria: a comparison of methods and efficiencies. Applied Microbiology and Biotechnology, 83, 791–798.

    Google Scholar 

  • Zheng, J.P., Wang, C.Z., Wang, X.X., Wang, H.Y., Zhuang, H., & Yao, K.D. (2007). Preparation of biomimetic three-dimensional gelatin/montmorillonite–chitosan scaffold for tissue engineering. Reactive and Functional Polymers, 67, 780–788.

  • Zhuang, H., Zheng, J.P., Gao, H., & De Yao, K. (2007). In vitro biodegradation and biocompatibility of gelatin/montmorillonite-chitosan intercalated nanocomposite. Journal of Materials Science: Materials in Medicine, 18, 951–957.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the financial support from MINECO, Spain (MAT2015-71117-R), and the EU COST Action Program (MP1202). B. Wicklein acknowledges MINECO, Spain, for the Juan de la Cierva grant (IJCI-2015-23886). The authors thank Dr. O. Piétrement and Dr. B.S. Lopez for fruitful discussions about sepiolite-DNA gene-transfer results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Ruiz-Hitzky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Hitzky, E., Darder, M., Wicklein, B. et al. CLAY-BASED BIOHYBRID MATERIALS FOR BIOMEDICAL AND PHARMACEUTICAL APPLICATIONS. Clays Clay Miner. 67, 44–58 (2019). https://doi.org/10.1007/s42860-019-0005-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-019-0005-0

Keywords

Navigation