Skip to main content
Log in

ARSENIC-BEARING SERPENTINE-GROUP MINERALS: MINERAL SYNTHESIS WITH INSIGHTS FOR THE ARSENIC CYCLE

  • Published:
Clays and Clay Minerals

Abstract

When present at elevated levels in drinking water, arsenic is toxic, and magnesian clays are gaining recognition as a source of elevated arsenic in groundwater. In the crust and upper mantle of Earth, arsenic incorporation into clay minerals is influenced by geochemical conditions associated with hydrothermal fluids and metamorphic processes (e.g. serpentinization), meaning that As is a useful tracer of fluid-flow in the deep Earth. To improve understanding of arsenic speciation in groundwater, sediments, soils, and hydrothermal-metamorphic systems, the present study examined arsenic incorporation into magnesian clays by synthesis of serpentine minerals (200oC, 10 d) with varied concentrations of Si, Al, As5+, and As3+. The synthesis experiments produced two distinct crystal types, tubular and platy serpentines, each with 10–15% randomly interstratified talc layers. X-ray absorption spectroscopy indicated that As5+ and As3+ occurred in the tetrahedral sheet. Single-crystal analysis revealed that tubular crystals contained up to 1 wt.% arsenic [Mg2.8(Si1.8As0.2)O5(OH)4] (mean 0.2 wt.% As). The mean composition of platy, high-Al crystals is (Mg1.8Al0.7)(Si2.0)O5(OH)4, and that of platy, medium-Al crystals with As3+ is (Mg2.07Al0.52) (Si1.97As3+0.03)O5(OH)4. Charge, geometry, and radius of tetrahedral AsO43– oxyanions are similar to tetrahedral SiO44–, and this facilitates fixation of As5+ into the tetrahedral sheet of clay minerals. The geometry and size of the larger As3+ in tetrahedral sites (as a pyramidal AsO33– oxyanion) may limit incorporation relative to As5+. Arsenic-bearing Mg clays crystallize in alkaline environments where AsO43– or AsO33– are the dominant As species and where high pH accompanies crystallization of serpentine, talc, chlorite, or Mg-smectite. The presence of tetrahedral As in these clays raises the possibility of tetrahedral As in other Mg clays (e.g. sepiolite or kerolite) as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  • Arai, Y., Elzinga, E. J., & Sparks, D. L. (2001). X-ray absorption spectroscopic investigation of arsenite and arsenate adsorption at the aluminum oxide–water interface. Journal of Colloid and Interface Science, 235, 80–88.

    Google Scholar 

  • Ballantyne, M., & Moore, J. N. (1988). Arsenic geochemistry in geothermal systems. Geochimica et Cosmochimica Acta, 52, 475–483.

    Google Scholar 

  • Barnes, I., & O’Neil, J. R. (1969). The relationship between fluids in some fresh alpine type ultramafics and possible modern serpentinization, western United States. Geological Society of America Bulletin, 80, 1947–1960.

    Google Scholar 

  • Bentabol, M., Ruiz Cruz, M. D., Huertas, F. J., & Linares, J. (2006). Hydrothermal synthesis of Mg- and Mg-Ni-rich kaolinite. Clays and Clay Minerals, 54, 667–677.

  • Bentabol, M., Ruiz Cruz, M. D., & Huertas, F. J. (2007). Synthesis of Ni-rich 1:1 phyllosilicates. Clays and Clay Minerals,55, 572–582.

    Google Scholar 

  • Bentabol, M., Ruiz Cruz, M. D., & Huertas, F. J. (2009). Hydrothermal synthesis (200°C) of Co–kaolinite and Al–Co–serpentine. Applied Clay Science, 42, 649–656.

    Google Scholar 

  • Bentabol, M., Ruiz Cruz, M., & Sobrados, I. (2010). Chemistry, morphology and structural characteristics of synthetic Al-lizardite. Clay Minerals, 45, 131–143.

    Google Scholar 

  • Bhattacharya, P., Welch, A. H., Stollenwerk, K. G., McLaughlin, M., Bundschuh, J., & Panaullah, G. (2007). Arsenic in the environment: biology and chemistry. Science of the Total Environment, 379, 109–120.

    Google Scholar 

  • Boskabadi, A., Pitcairn, I. K., Broman, C., Boyce, A., Teagle, D. A. H., Cooper, M. J., Azer, M. K., Stern, R. J., Mohamed, F. H., & Majka, J. (2017). Carbonate alteration of ophiolitic rocks in the Arabian–Nubian Shield of Egypt: sources and compositions of the carbonating fluid and implications for the formation of Au deposits. International Geology Review, 59, 391–419.

    Google Scholar 

  • Breuer, C., & Pichler, T. (2013). Arsenic in marine hydrothermal fluids. Chemical Geology, 348, 2–14.

    Google Scholar 

  • Brindley, G. W., & Brown, G. (1980). Crystal Structures of Clay Minerals and their X-ray Identification. Monograph 5, Mineralogical Society, London.

  • Capitani, G., & Mellini, M. (2004). The modulated crystal structure of antigorite: The m=17 polysome. American Mineralogist, 89, 147–158.

    Google Scholar 

  • Čavajda, V., Uhlík, P., Derkowski, A., Čaplovičová, M., Madejová, J., Mikula, M., & Ifka, T. (2015). Influence of grinding and sonication on the crystal structure of talc. Clays and Clay Minerals, 63, 311–327.

    Google Scholar 

  • Charnock, J. M., Polya, D. A., Gault, G., & Wogelius, R. (2007). Direct EXAFS evidence for incorporation of As5+ in the tetrahedral site of natural andraditic garnet. American Mineralogist, 92, 1856–1861.

    Google Scholar 

  • Chukanov, N. V. (2014). Infrared Spectra of Mineral Species: Extended Library, volume 1. Berlin: Springer.

  • Cliff, G., & Lorimer, G. W. (1975). The quantitative analysis of thin specimens. Journal of Microscopy, 103, 203–207.

    Google Scholar 

  • Craw, D., Landis, C. A., & Kelsey, P. I. (1987). Authigenic chrysotile formation in the matrix of Quaternary debris flows, northern Southland, New Zealand. Clays and Clay Minerals, 35, 43–52.

    Google Scholar 

  • Deer, W. A., Howie, R. A., & Zussman, J. (2009). Rock-Forming Minerals vol. 3B, Layered Silicates Excluding Micas and Clay Minerals. 2nd edition. London: Geological Society.

    Google Scholar 

  • Deschamps, F., Guillot, S., Godard, M., Chauvel, C., Andreani, M., & Hattori, K. (2010). In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chemical Geology, 269, 262–277.

    Google Scholar 

  • Dódony, I., Pósfai, M., & Buseck, P. R. (2002). Revised structure models for antigorite: An HRTEM study. American Mineralogist, 87, 1443–1457.

    Google Scholar 

  • Farmer, V. C. (1974). The layer silicates. In V. C. Farmer (Ed.), The Infrared Spectra of Minerals (pp. 331–365). London: Mineralogical Society.

    Google Scholar 

  • Farmer, V. C., & Russell, J. D. (1967). Infrared absorption spectrometry in clay studies. Clays and Clay Minerals, 15, 121–142.

    Google Scholar 

  • Frost, R. L., Xi, Y., Pogson, R. E., & Scholz, R. (2013). A vibrational spectroscopic study of philipsbornite PbAl3(AsO4)(OH)5.H2 Omolecular structural implications and relationship to the crandallite subgroup arsenates. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 104, 257–261.

    Google Scholar 

  • Fuchs, Y., Linares, J., & Mellini, M. (1998). Mössbauer and infrared spectrometry of lizardite-1T from Monte Fico, Elba. Physics and Chemistry of Minerals, 26, 111–115.

  • Guillot, S., & Charlet, L. (2007). Bengal arsenic, an archive of Himalaya orogeny and paleohydrology. Journal of Environmental Science and Health A, 42, 1785–1794.

    Google Scholar 

  • Hattori, K., Takahashi, Y., Guillot, S., & Johanson, B. (2005). Occurrence of arsenic (V) in forearc mantle serpentinites based on X-ray absorption spectroscopy study. Geochimica et Cosmochimica Acta, 69, 5585–5596.

    Google Scholar 

  • Inoue, A. (1995). Formation of clay minerals in hydrothermal environments. In B. Velde (Ed.), Origin and Mineralogy of Clays (pp. 268–329). Berlin: Springer.

    Google Scholar 

  • Iriarte, I., Petit, S., Huertas, F. J., Fiore, S., Grauby, O., Decarreau, A., & Linares, J. (2005). Synthesis of kaolinite with a high level of Fe3+ for Al substitution. Clays and Clay Minerals, 53, 1–10.

    Google Scholar 

  • Ishimaru, S., & Arai, S. (2008). Arsenide in a metasomatized peridotite xenolith as a constraint on arsenic behavior in the mantle wedge. American Mineralogist, 93, 1061–1065.

    Google Scholar 

  • James-Smith, J., Cauzid, J., Testamale, D., Liu, W., Hazemann, J.-L., Proux, O., Etschmann, B., Philipott, P., Banks, D., Williams, P., & Brugger, J. (2010). Arsenic speciation in fluid inclusions using micro-beam X-ray absorption spectroscopy. American Mineralogist, 95, 921–932.

    Google Scholar 

  • Jones, B. F., & Conko, K. M. (2011). Environmental influences on the occurrences of sepiolite and palygorskite: A brief review. Developments in Clay Science, 3, 69–83.

    Google Scholar 

  • Lafay, R., Montes-Hernandez, G., Janots, E., Munoz, M., Auzende, A. L., Gehin, A., Chiriac, R., & Proux, O. (2016). Experimental investigation of As, Sb and Cs behavior during olivine serpentinization in hydrothermal alkaline systems. Geochimica et Cosmochimica Acta, 179, 177–202.

    Google Scholar 

  • Liu, S., Jing, C., & Meng, X. (2008). Arsenic re-mobilization in water treatment adsorbents under reducing conditions: Part II. XAS and modeling study. Science of The Total Environment, 392, 137–144.

    Google Scholar 

  • López, D. L., Birkle, P., Bundschuh, J., Sracek, O., Armienta, M. A., Cornejo, L., & Ormachea, M. (2012). Arsenic in geothermal waters of volcanic–magmatic systems of Latin America. Science of the Total Environment, 429, 57–75.

    Google Scholar 

  • Masuda, H. (2018). Arsenic cycling in the Earth’s crust and hydrosphere: interaction between naturally occurring arsenic and human activities. Progress in Earth and Planetary Science, 5, 68.

    Google Scholar 

  • Masuda, H., Shinoda, K., Okudaira, T., Takahashi, Y., & Noguchi, N. (2012). Chlorite – source of arsenic groundwater pollution in the Holocene aquifer of Bangladesh. Geochemical Journal, 46, 381–391.

    Google Scholar 

  • Mellini, M., Fuchs, Y., Viti, C., Lemaire, C., & Linares, J. (2002). Insights into the antigorite structure from Mössbauer and FTIR spectroscopies. European Journal of Mineralogy, 14, 97–104.

    Google Scholar 

  • Méring, J. (1949). L'intereférence des Rayons X dans les systèmes à stratification désordonée. Acta. Crystallographica, 2, 371–377.

    Google Scholar 

  • Meunier, A. (2005). Clays. Berlin: Springer-Verlag.

    Google Scholar 

  • Milham, L., & Craw, D. (2009). Two-stage structural development of a Paleozoic auriferous shear zone at the Globe-Progress deposit, Reefton, New Zealand. New Zealand Journal of Geology and Geophysics, 52, 247–259.

    Google Scholar 

  • Moore, D. M., & Reynolds Jr., R. C. (1997). X-ray Diffraction and the Identification and Analysis of Clay Minerals. New York: Oxford University Press.

    Google Scholar 

  • Mukherjee, A., Verma, S., Gupta, S., Henke, K., & Bhattacharya, P. (2014). Influence of tectonics, sedimentation and aqueous flow cycles on the origin of global groundwater arsenic: paradigms from three continents. Journal of Hydrology, 518, 284–299.

    Google Scholar 

  • Müller, K., Ciminelli, V. S. T., Dantas, M. S. S., & Willscher, S. (2010). A comparative study of As(III) and As(V) in aqueous solutions and adsorbed on iron oxy-hydroxides by Raman spectroscopy. Water Research, 44, 5660–5672.

    Google Scholar 

  • Myneni, S. C. B., Traina, S. J., Waychunas, G. A., & Logan, T. J. (1998). Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions, solids, and at mineral-water interfaces. Geochimica et Cosmochimica Acta, 62, 3285–3300.

    Google Scholar 

  • Navas-Acien, A., Silbergeld, E. K., Pastor-Barriuso, R., & Guallar, E. (2010). Arsenic exposure and prevalence of type 2 Diabetes in US adults. Journal of the American Medical Association, 300, 814–822.

    Google Scholar 

  • Newville, M. (2001). IFEFFIT: interactive XAFS analysis and FEFF fitting. Journal of Synchrotron Radiation, 8, 322–324.

    Google Scholar 

  • Niu, L. (2011). Arsenic distribution and speciation in antigorite-rich rocks from Vermont, USA. M.Sc. thesis, Univ. Ottawa, Ontario, Canada, 111 pp.

  • Opiso, E. M., Sato, T., Morimoto, K., Asai, A., Anraku, S., Numako, C., & Yoneda, T. (2010). Incorporation of arsenic during the formation of Mg-bearing minerals at alkaline condition. Minerals Engineering, 23, 230–237.

    Google Scholar 

  • Pascua, C., Charnock, J., Polya, D. A., Sato, T., Yokoyama, S., & Minato, M. (2005). Arsenic bearing smectite from the geothermal environment. Mineralogical Magazine, 69, 897–906.

    Google Scholar 

  • Petit, S., & Decarreau, A. (1990). Hydrothermal (200°C) synthesis and crystal chemistry of iron-rich kaolinites. Clay Minerals, 25, 181–196.

    Google Scholar 

  • Petit, S., Baron, F., & Decarreau, A. (2017). Synthesis of nontronite and other Fe-rich smectites: a critical review. Clay Minerals, 52, 469–483.

    Google Scholar 

  • Ravel, B., & Newville, M. (2005). ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 12, 537–541.

    Google Scholar 

  • Rehr, J. J., Kas, J. J., Vila, F. D., Prange, M. P., & Jorissen, K. (2010). Parameter-free calculations of X-ray spectra with FEFF9. Physical Chemistry and Chemical Physics, 12, 5503–5513.

    Google Scholar 

  • Rozalén, M., Ramos, M. E., Fiore, S., Gervilla, F., & Huertas, F. J. (2014). Effect of oxalate and pH on chrysotile dissolution at 25 °C: An experimental study. American Mineralogist, 99, 589–600.

    Google Scholar 

  • Ryan, P. C., Kim, J., Wall, A. J., Moen, J. C., Corenthal, L. G., Chow, D. R., Sullivan, C. M., & Bright, K. S. (2011). Ultramafic-derived arsenic in a fractured bedrock aquifer. Applied Geochemistry, 26, 444–457.

    Google Scholar 

  • Serna, C. J., White, J. L., & Velde, B. D. (1979). The effect of aluminium on the infra-red spectra of 7 Å trioctahedral minerals. Mineralogical Magazine, 43, 141–148.

  • Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallografica, A32, 751–767.

    Google Scholar 

  • Shi, X., Ayotte, J. D., Onda, A., Miller, S., Rees, J., Gilbert-Diamond, D., Onega, T., Gui, J., Karagas, M., & Moeschler, J. (2015). Geospatial association between adverse birth outcomes and arsenic in groundwater in New Hampshire, USA. Environmental Geochemistry and Health, 37, 333–351.

    Google Scholar 

  • Shock, E. L., Sassani, D. C., Willis, M., & Sverjensky, D. A. (1997). Inorganic species in geologic fluids: Correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochimica et Cosmochimica Acta, 61, 907–950.

    Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behavior and distribution of As in natural waters. Applied Geochemistry, 17, 517–568.

    Google Scholar 

  • Suquet, H. (1987). Effects of dry grinding and leaching on the crystal structure of chrysotile. Clays and Clay Minerals, 37, 439–445.

    Google Scholar 

  • Takahashi, Y., Ohtaku, N., Mitsunobu, S., Yuita, K., & Nomura, M. (2003). Determination of the As(III)/As(V) Ratio in Soil by X-ray Absorption Near-edge Structure (XANES) and Its Application to the Arsenic Distribution between Soil and Water. Analytical Sciences, 19, 891–896.

    Google Scholar 

  • Viti, C., & Mellini, M. (1997). Contrasting chemical compositions in associated lizardite and chrysotile in veins from Elba, Italy. European Journal of Mineralogy, 9, 585–596.

    Google Scholar 

  • Webster, J. G., & Nordstrom, D. K. (2003). Geothermal arsenic: the source, transport and fate of arsenic in geothermal systems. In A. H. Welch & K. G. Stollenwerk (Eds.), Arsenic in Ground Water: Geochemistry and Occurrence (pp. 101–126). New York: Kluwer Academic Publishers.

    Google Scholar 

  • Wicks, F. F., & O'Hanley, D. S. (1988). Serpentine minerals: structures and properties. In S. W. Bailey (Ed.), Hydrous Phyllosilicates, Reviews in Mineralogy 19 (pp. 91–167). Washington, D.C.: Mineralogical Society of America.

    Google Scholar 

  • Yariv, S., & Heller-Kallai, L. (1975). The relationship between the IR spectra of serpentines and their structures. Clays and Clay Minerals, 23, 145–152.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Funding was provided by NSF-EAR-0959306, the Middlebury College Undergraduate Research Office, and MINECO (CGL2014-55108-P and CGL2017-92600-EXP) with a contribution of FEDER funds. The authors thank Dr. Eli Stavitski for use of the Inner Shell Spectroscopy beamline (8-ID) of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704. The authors thank the following for technical expertise and assistance: María del Mar Abad for TEM, Jody Smith for ICPMS, and Eduardo Flores for FTIR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Ryan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest, whether ethical, financial or otherwise.

Additional information

A note on terminology of arsenic species: to avoid confusion with the often imprecise terms arsenate and arsenite, this article uses “As5+” and “As3+” as much as possible. As used herein, these are effectively equivalent to As(V) and As(III).

Electronic supplementary material

Fig S1.

Se K-edge EXAFS k3 * χ(k) spectra of Serp 5. (PNG 61 kb)

High resolution image (EPS 1134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryan, P.C., Huertas, F., Pincus, L.N. et al. ARSENIC-BEARING SERPENTINE-GROUP MINERALS: MINERAL SYNTHESIS WITH INSIGHTS FOR THE ARSENIC CYCLE. Clays Clay Miner. 67, 488–506 (2019). https://doi.org/10.1007/s42860-019-00040-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-019-00040-1

Keywords

Navigation