Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

ARSENIC-BEARING SERPENTINE-GROUP MINERALS: MINERAL SYNTHESIS WITH INSIGHTS FOR THE ARSENIC CYCLE

  • 9 Accesses

Abstract

When present at elevated levels in drinking water, arsenic is toxic, and magnesian clays are gaining recognition as a source of elevated arsenic in groundwater. In the crust and upper mantle of Earth, arsenic incorporation into clay minerals is influenced by geochemical conditions associated with hydrothermal fluids and metamorphic processes (e.g. serpentinization), meaning that As is a useful tracer of fluid-flow in the deep Earth. To improve understanding of arsenic speciation in groundwater, sediments, soils, and hydrothermal-metamorphic systems, the present study examined arsenic incorporation into magnesian clays by synthesis of serpentine minerals (200oC, 10 d) with varied concentrations of Si, Al, As5+, and As3+. The synthesis experiments produced two distinct crystal types, tubular and platy serpentines, each with 10–15% randomly interstratified talc layers. X-ray absorption spectroscopy indicated that As5+ and As3+ occurred in the tetrahedral sheet. Single-crystal analysis revealed that tubular crystals contained up to 1 wt.% arsenic [Mg2.8(Si1.8As0.2)O5(OH)4] (mean 0.2 wt.% As). The mean composition of platy, high-Al crystals is (Mg1.8Al0.7)(Si2.0)O5(OH)4, and that of platy, medium-Al crystals with As3+ is (Mg2.07Al0.52) (Si1.97As3+0.03)O5(OH)4. Charge, geometry, and radius of tetrahedral AsO43– oxyanions are similar to tetrahedral SiO44–, and this facilitates fixation of As5+ into the tetrahedral sheet of clay minerals. The geometry and size of the larger As3+ in tetrahedral sites (as a pyramidal AsO33– oxyanion) may limit incorporation relative to As5+. Arsenic-bearing Mg clays crystallize in alkaline environments where AsO43– or AsO33– are the dominant As species and where high pH accompanies crystallization of serpentine, talc, chlorite, or Mg-smectite. The presence of tetrahedral As in these clays raises the possibility of tetrahedral As in other Mg clays (e.g. sepiolite or kerolite) as well.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

REFERENCES

  1. Arai, Y., Elzinga, E. J., & Sparks, D. L. (2001). X-ray absorption spectroscopic investigation of arsenite and arsenate adsorption at the aluminum oxide–water interface. Journal of Colloid and Interface Science, 235, 80–88.

  2. Ballantyne, M., & Moore, J. N. (1988). Arsenic geochemistry in geothermal systems. Geochimica et Cosmochimica Acta, 52, 475–483.

  3. Barnes, I., & O’Neil, J. R. (1969). The relationship between fluids in some fresh alpine type ultramafics and possible modern serpentinization, western United States. Geological Society of America Bulletin, 80, 1947–1960.

  4. Bentabol, M., Ruiz Cruz, M. D., Huertas, F. J., & Linares, J. (2006). Hydrothermal synthesis of Mg- and Mg-Ni-rich kaolinite. Clays and Clay Minerals, 54, 667–677.

  5. Bentabol, M., Ruiz Cruz, M. D., & Huertas, F. J. (2007). Synthesis of Ni-rich 1:1 phyllosilicates. Clays and Clay Minerals,55, 572–582.

  6. Bentabol, M., Ruiz Cruz, M. D., & Huertas, F. J. (2009). Hydrothermal synthesis (200°C) of Co–kaolinite and Al–Co–serpentine. Applied Clay Science, 42, 649–656.

  7. Bentabol, M., Ruiz Cruz, M., & Sobrados, I. (2010). Chemistry, morphology and structural characteristics of synthetic Al-lizardite. Clay Minerals, 45, 131–143.

  8. Bhattacharya, P., Welch, A. H., Stollenwerk, K. G., McLaughlin, M., Bundschuh, J., & Panaullah, G. (2007). Arsenic in the environment: biology and chemistry. Science of the Total Environment, 379, 109–120.

  9. Boskabadi, A., Pitcairn, I. K., Broman, C., Boyce, A., Teagle, D. A. H., Cooper, M. J., Azer, M. K., Stern, R. J., Mohamed, F. H., & Majka, J. (2017). Carbonate alteration of ophiolitic rocks in the Arabian–Nubian Shield of Egypt: sources and compositions of the carbonating fluid and implications for the formation of Au deposits. International Geology Review, 59, 391–419.

  10. Breuer, C., & Pichler, T. (2013). Arsenic in marine hydrothermal fluids. Chemical Geology, 348, 2–14.

  11. Brindley, G. W., & Brown, G. (1980). Crystal Structures of Clay Minerals and their X-ray Identification. Monograph 5, Mineralogical Society, London.

  12. Capitani, G., & Mellini, M. (2004). The modulated crystal structure of antigorite: The m=17 polysome. American Mineralogist, 89, 147–158.

  13. Čavajda, V., Uhlík, P., Derkowski, A., Čaplovičová, M., Madejová, J., Mikula, M., & Ifka, T. (2015). Influence of grinding and sonication on the crystal structure of talc. Clays and Clay Minerals, 63, 311–327.

  14. Charnock, J. M., Polya, D. A., Gault, G., & Wogelius, R. (2007). Direct EXAFS evidence for incorporation of As5+ in the tetrahedral site of natural andraditic garnet. American Mineralogist, 92, 1856–1861.

  15. Chukanov, N. V. (2014). Infrared Spectra of Mineral Species: Extended Library, volume 1. Berlin: Springer.

  16. Cliff, G., & Lorimer, G. W. (1975). The quantitative analysis of thin specimens. Journal of Microscopy, 103, 203–207.

  17. Craw, D., Landis, C. A., & Kelsey, P. I. (1987). Authigenic chrysotile formation in the matrix of Quaternary debris flows, northern Southland, New Zealand. Clays and Clay Minerals, 35, 43–52.

  18. Deer, W. A., Howie, R. A., & Zussman, J. (2009). Rock-Forming Minerals vol. 3B, Layered Silicates Excluding Micas and Clay Minerals. 2nd edition. London: Geological Society.

  19. Deschamps, F., Guillot, S., Godard, M., Chauvel, C., Andreani, M., & Hattori, K. (2010). In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chemical Geology, 269, 262–277.

  20. Dódony, I., Pósfai, M., & Buseck, P. R. (2002). Revised structure models for antigorite: An HRTEM study. American Mineralogist, 87, 1443–1457.

  21. Farmer, V. C. (1974). The layer silicates. In V. C. Farmer (Ed.), The Infrared Spectra of Minerals (pp. 331–365). London: Mineralogical Society.

  22. Farmer, V. C., & Russell, J. D. (1967). Infrared absorption spectrometry in clay studies. Clays and Clay Minerals, 15, 121–142.

  23. Frost, R. L., Xi, Y., Pogson, R. E., & Scholz, R. (2013). A vibrational spectroscopic study of philipsbornite PbAl3(AsO4)(OH)5.H2 Omolecular structural implications and relationship to the crandallite subgroup arsenates. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 104, 257–261.

  24. Fuchs, Y., Linares, J., & Mellini, M. (1998). Mössbauer and infrared spectrometry of lizardite-1T from Monte Fico, Elba. Physics and Chemistry of Minerals, 26, 111–115.

  25. Guillot, S., & Charlet, L. (2007). Bengal arsenic, an archive of Himalaya orogeny and paleohydrology. Journal of Environmental Science and Health A, 42, 1785–1794.

  26. Hattori, K., Takahashi, Y., Guillot, S., & Johanson, B. (2005). Occurrence of arsenic (V) in forearc mantle serpentinites based on X-ray absorption spectroscopy study. Geochimica et Cosmochimica Acta, 69, 5585–5596.

  27. Inoue, A. (1995). Formation of clay minerals in hydrothermal environments. In B. Velde (Ed.), Origin and Mineralogy of Clays (pp. 268–329). Berlin: Springer.

  28. Iriarte, I., Petit, S., Huertas, F. J., Fiore, S., Grauby, O., Decarreau, A., & Linares, J. (2005). Synthesis of kaolinite with a high level of Fe3+ for Al substitution. Clays and Clay Minerals, 53, 1–10.

  29. Ishimaru, S., & Arai, S. (2008). Arsenide in a metasomatized peridotite xenolith as a constraint on arsenic behavior in the mantle wedge. American Mineralogist, 93, 1061–1065.

  30. James-Smith, J., Cauzid, J., Testamale, D., Liu, W., Hazemann, J.-L., Proux, O., Etschmann, B., Philipott, P., Banks, D., Williams, P., & Brugger, J. (2010). Arsenic speciation in fluid inclusions using micro-beam X-ray absorption spectroscopy. American Mineralogist, 95, 921–932.

  31. Jones, B. F., & Conko, K. M. (2011). Environmental influences on the occurrences of sepiolite and palygorskite: A brief review. Developments in Clay Science, 3, 69–83.

  32. Lafay, R., Montes-Hernandez, G., Janots, E., Munoz, M., Auzende, A. L., Gehin, A., Chiriac, R., & Proux, O. (2016). Experimental investigation of As, Sb and Cs behavior during olivine serpentinization in hydrothermal alkaline systems. Geochimica et Cosmochimica Acta, 179, 177–202.

  33. Liu, S., Jing, C., & Meng, X. (2008). Arsenic re-mobilization in water treatment adsorbents under reducing conditions: Part II. XAS and modeling study. Science of The Total Environment, 392, 137–144.

  34. López, D. L., Birkle, P., Bundschuh, J., Sracek, O., Armienta, M. A., Cornejo, L., & Ormachea, M. (2012). Arsenic in geothermal waters of volcanic–magmatic systems of Latin America. Science of the Total Environment, 429, 57–75.

  35. Masuda, H. (2018). Arsenic cycling in the Earth’s crust and hydrosphere: interaction between naturally occurring arsenic and human activities. Progress in Earth and Planetary Science, 5, 68.

  36. Masuda, H., Shinoda, K., Okudaira, T., Takahashi, Y., & Noguchi, N. (2012). Chlorite – source of arsenic groundwater pollution in the Holocene aquifer of Bangladesh. Geochemical Journal, 46, 381–391.

  37. Mellini, M., Fuchs, Y., Viti, C., Lemaire, C., & Linares, J. (2002). Insights into the antigorite structure from Mössbauer and FTIR spectroscopies. European Journal of Mineralogy, 14, 97–104.

  38. Méring, J. (1949). L'intereférence des Rayons X dans les systèmes à stratification désordonée. Acta. Crystallographica, 2, 371–377.

  39. Meunier, A. (2005). Clays. Berlin: Springer-Verlag.

  40. Milham, L., & Craw, D. (2009). Two-stage structural development of a Paleozoic auriferous shear zone at the Globe-Progress deposit, Reefton, New Zealand. New Zealand Journal of Geology and Geophysics, 52, 247–259.

  41. Moore, D. M., & Reynolds Jr., R. C. (1997). X-ray Diffraction and the Identification and Analysis of Clay Minerals. New York: Oxford University Press.

  42. Mukherjee, A., Verma, S., Gupta, S., Henke, K., & Bhattacharya, P. (2014). Influence of tectonics, sedimentation and aqueous flow cycles on the origin of global groundwater arsenic: paradigms from three continents. Journal of Hydrology, 518, 284–299.

  43. Müller, K., Ciminelli, V. S. T., Dantas, M. S. S., & Willscher, S. (2010). A comparative study of As(III) and As(V) in aqueous solutions and adsorbed on iron oxy-hydroxides by Raman spectroscopy. Water Research, 44, 5660–5672.

  44. Myneni, S. C. B., Traina, S. J., Waychunas, G. A., & Logan, T. J. (1998). Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions, solids, and at mineral-water interfaces. Geochimica et Cosmochimica Acta, 62, 3285–3300.

  45. Navas-Acien, A., Silbergeld, E. K., Pastor-Barriuso, R., & Guallar, E. (2010). Arsenic exposure and prevalence of type 2 Diabetes in US adults. Journal of the American Medical Association, 300, 814–822.

  46. Newville, M. (2001). IFEFFIT: interactive XAFS analysis and FEFF fitting. Journal of Synchrotron Radiation, 8, 322–324.

  47. Niu, L. (2011). Arsenic distribution and speciation in antigorite-rich rocks from Vermont, USA. M.Sc. thesis, Univ. Ottawa, Ontario, Canada, 111 pp.

  48. Opiso, E. M., Sato, T., Morimoto, K., Asai, A., Anraku, S., Numako, C., & Yoneda, T. (2010). Incorporation of arsenic during the formation of Mg-bearing minerals at alkaline condition. Minerals Engineering, 23, 230–237.

  49. Pascua, C., Charnock, J., Polya, D. A., Sato, T., Yokoyama, S., & Minato, M. (2005). Arsenic bearing smectite from the geothermal environment. Mineralogical Magazine, 69, 897–906.

  50. Petit, S., & Decarreau, A. (1990). Hydrothermal (200°C) synthesis and crystal chemistry of iron-rich kaolinites. Clay Minerals, 25, 181–196.

  51. Petit, S., Baron, F., & Decarreau, A. (2017). Synthesis of nontronite and other Fe-rich smectites: a critical review. Clay Minerals, 52, 469–483.

  52. Ravel, B., & Newville, M. (2005). ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 12, 537–541.

  53. Rehr, J. J., Kas, J. J., Vila, F. D., Prange, M. P., & Jorissen, K. (2010). Parameter-free calculations of X-ray spectra with FEFF9. Physical Chemistry and Chemical Physics, 12, 5503–5513.

  54. Rozalén, M., Ramos, M. E., Fiore, S., Gervilla, F., & Huertas, F. J. (2014). Effect of oxalate and pH on chrysotile dissolution at 25 °C: An experimental study. American Mineralogist, 99, 589–600.

  55. Ryan, P. C., Kim, J., Wall, A. J., Moen, J. C., Corenthal, L. G., Chow, D. R., Sullivan, C. M., & Bright, K. S. (2011). Ultramafic-derived arsenic in a fractured bedrock aquifer. Applied Geochemistry, 26, 444–457.

  56. Serna, C. J., White, J. L., & Velde, B. D. (1979). The effect of aluminium on the infra-red spectra of 7 Å trioctahedral minerals. Mineralogical Magazine, 43, 141–148.

  57. Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallografica, A32, 751–767.

  58. Shi, X., Ayotte, J. D., Onda, A., Miller, S., Rees, J., Gilbert-Diamond, D., Onega, T., Gui, J., Karagas, M., & Moeschler, J. (2015). Geospatial association between adverse birth outcomes and arsenic in groundwater in New Hampshire, USA. Environmental Geochemistry and Health, 37, 333–351.

  59. Shock, E. L., Sassani, D. C., Willis, M., & Sverjensky, D. A. (1997). Inorganic species in geologic fluids: Correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochimica et Cosmochimica Acta, 61, 907–950.

  60. Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behavior and distribution of As in natural waters. Applied Geochemistry, 17, 517–568.

  61. Suquet, H. (1987). Effects of dry grinding and leaching on the crystal structure of chrysotile. Clays and Clay Minerals, 37, 439–445.

  62. Takahashi, Y., Ohtaku, N., Mitsunobu, S., Yuita, K., & Nomura, M. (2003). Determination of the As(III)/As(V) Ratio in Soil by X-ray Absorption Near-edge Structure (XANES) and Its Application to the Arsenic Distribution between Soil and Water. Analytical Sciences, 19, 891–896.

  63. Viti, C., & Mellini, M. (1997). Contrasting chemical compositions in associated lizardite and chrysotile in veins from Elba, Italy. European Journal of Mineralogy, 9, 585–596.

  64. Webster, J. G., & Nordstrom, D. K. (2003). Geothermal arsenic: the source, transport and fate of arsenic in geothermal systems. In A. H. Welch & K. G. Stollenwerk (Eds.), Arsenic in Ground Water: Geochemistry and Occurrence (pp. 101–126). New York: Kluwer Academic Publishers.

  65. Wicks, F. F., & O'Hanley, D. S. (1988). Serpentine minerals: structures and properties. In S. W. Bailey (Ed.), Hydrous Phyllosilicates, Reviews in Mineralogy 19 (pp. 91–167). Washington, D.C.: Mineralogical Society of America.

  66. Yariv, S., & Heller-Kallai, L. (1975). The relationship between the IR spectra of serpentines and their structures. Clays and Clay Minerals, 23, 145–152.

Download references

ACKNOWLEDGMENTS

Funding was provided by NSF-EAR-0959306, the Middlebury College Undergraduate Research Office, and MINECO (CGL2014-55108-P and CGL2017-92600-EXP) with a contribution of FEDER funds. The authors thank Dr. Eli Stavitski for use of the Inner Shell Spectroscopy beamline (8-ID) of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704. The authors thank the following for technical expertise and assistance: María del Mar Abad for TEM, Jody Smith for ICPMS, and Eduardo Flores for FTIR.

Author information

Correspondence to P. C. Ryan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest, whether ethical, financial or otherwise.

Additional information

A note on terminology of arsenic species: to avoid confusion with the often imprecise terms arsenate and arsenite, this article uses “As5+” and “As3+” as much as possible. As used herein, these are effectively equivalent to As(V) and As(III).

Electronic supplementary material

Fig S1.
figure10

Se K-edge EXAFS k3 * χ(k) spectra of Serp 5. (PNG 61 kb)

High resolution image (EPS 1134 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ryan, P.C., Huertas, F., Pincus, L.N. et al. ARSENIC-BEARING SERPENTINE-GROUP MINERALS: MINERAL SYNTHESIS WITH INSIGHTS FOR THE ARSENIC CYCLE. Clays Clay Miner. (2020). https://doi.org/10.1007/s42860-019-00040-1

Download citation

Keywords

  • Aquifer
  • Arsenic
  • Hydrothermal
  • Mineral synthesis
  • Serpentine
  • Tetrahedral