Skip to main content
Log in

A New Kaolin Deposit in Western Africa: Mineralogical and Compositional Features of Kaolinite from Caluquembe (Angola)

  • Published:
Clays and Clay Minerals

Abstract

Large kaolin deposits developed by weathering on Precambrian granitic rocks have been discovered in the Caluquembe area, Huíla province, Angola. To determine accuracy of analysis and to evaluate the kaolinite grade, a full-profile Rietveld refinement by X-ray Powder Diffraction (XRPD) and Thermal Gravimetric Analysis (TGA) was used. Caluquembe kaolin is composed mainly of kaolinite (44–93 wt.%), quartz (0–23 wt.%), and feldspar (4–14 wt.%). The Aparicio-Galán-Ferrell index (AGFI), calculated by XRPD profile refinement, indicates low- and medium-defect kaolinite. Kaolinite particles show a platy habit and they stack together forming ‘booklets’ or radial aggregates; they also occur as small anhedral particles in a finer-grained mass. Muscovite-kaolinite intergrowths have also been found. Whole-rock chemical analysis included major, trace, and Rare Earth Elements (REE). Chondrite-normalized REE patterns show the same tendency for all samples, with a significant enrichment in Light Rare Earth Elements (LREE). Mineralogical and compositional features of the Caluquembe kaolin indicate that it is a suitable material for the manufacture of structural products, such as bricks, paving stones, and roofing tiles. In addition, the significant REE contents of the Caluquembe kaolin can be considered as a potential future target of mining exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aagaard, P. (1974). Rare earth elements adsorption on clay minerals. Bulletin du groupe français des argiles, 26, 193–199.

    Article  Google Scholar 

  • Aparicio, P. & Galán, E. (1999). Mineralogical interference on kaolinite crystallinity index measurements. Clays and Clay Minerals, 47, 12–27.

    Article  Google Scholar 

  • Aparicio, P., Galán, E., & Ferrell, R. E. (2006). A new kaolinite order index based on XRD profile fitting. Clay Minerals, 41, 811–817.

    Article  Google Scholar 

  • Ashwal, L. D. & Twist, D. (1994). The Kunene complex, Angola/Namibia: a composite massif-type anorthosite complex. Geological Magazine, 131, 579–591.

    Article  Google Scholar 

  • Bailey, S. W. (1980). Structure of layer silicates. Pp. 1-123 in: Crystal Structures of Clay Minerals and their X-ray Identification. (G.W. Brindley and G. Brown, editors). Monograph, 5. London: Mineralogical Society.

    Google Scholar 

  • Bao, Z., & Zhao, Z. (2008). Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geology Reviews, 13, 519–535.

    Article  Google Scholar 

  • Bish, D. L. (1993). Rietveld refinement of the kaolinite structure at 1.5 K. Clays and Clay Minerals, 41, 738–744.

    Article  Google Scholar 

  • Bermúdez-Lugo, O. (2014) Angola and Namibia, Minerals Year Book. U.S. Geological Survey.

  • De Carvalho, H., Tassinari, C., Alves, P., Guimaraes, F., & Simoes, M. C. (2000). Geochronological review of the Precambrian in western Angola: Links with Brazil. Journal of African Earth Sciences, 31, 383–402.

    Article  Google Scholar 

  • Detellier, C., & Schoonheydt, R. A. (2014). From platy kaolinite to nanorolls. Elements, 10, 201–206.

    Article  Google Scholar 

  • Dedzo, G. K. & Detellier, C. (2016). Functional nanohybrid materials derived from kaolinite. Applied Clay Science, 130, 33–39.

    Article  Google Scholar 

  • Dill, H. G. (2016). Kaolin: Soil, rock and ore. From the mineral to the magmatic, sedimentary and metamorphic environments. Earth-Science Reviews, 161, 16–129.

    Article  Google Scholar 

  • Ekosse, G.-I. (2000). The Makoro kaolin deposit, southeastern Botswana: its genesis and possible industrial applications. Applied clay science, 16, 301–320.

    Article  Google Scholar 

  • Ekosse, G.-I. (2010). Kaolin deposits and occurrences in Africa: Geology, mineralogy and utilization. Applied Clay Science, 50, 212–236.

    Article  Google Scholar 

  • Elliot, W. C., Gardner, D. J., Malla, P., & Riley, E. (2018). A new look at the occurrences of the rare-earth elements in the Georgia Kaolins. Clays and Clay Minerals, 66(3), 245–260.

    Google Scholar 

  • Flanagan, M. D. (2016). Clays in Mineral Commodity summaries (Vol. 50). U.S. Geological Survey.

  • Galán, E. (2006). Genesis of clay minerals, Pp, 1129–1162 in: Handbook of Clay Science. (F. Bergaya, B.K.G. Theng, and G. Lagaly editors) Developments in Clay Science 1. Elsevier, Amsterdam.

  • Galán, E., Aparicio, P., Fernández-Caliani, J.C., Miras, A., G. Márquez, M, Fallick, A. and Clauer, N. (2016) New insights on mineralogy and genesis of kaolin deposits: The Burela kaolin deposit (Northwestern Spain). Applied Clay Science, 131, 14-26.

  • Gomes, C., Velho, J. A., & Guimaraes, F. (1994). Kaolin deposit of Mevaiela (Angola) alteration product of anorthosite: assessment of kaolin potentialities for applications in paper. Applied Clay Science, 9, 97–106.

    Article  Google Scholar 

  • Guggenheim, S., Adams, J. M., Bain, D. C., Bergaya, F., Brigatti, M. F., Drits, V. A., Formoso, M. L. L., Galán, E., Kogure, T., & Stanjek, H. (2006). Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour l’etude des Argiles, nomenclature committee for 2006. Clay Minerals, 41, 863–877.

    Article  Google Scholar 

  • Hanson, R.E. (2003). Proterozoic geochronology and tectonic evolution of southern Africa. Pp. 427–463 in: Proterozoic East Gondwana: Supercontinent Assembly and Breakup (M. Yoshida, B.F. Windley, and S. Dasgupta, editors). Geological Society of London, Special Publications, 206, 427-463.

  • Heckroodt, R. O. (1991). Clay and clay materials in South Africa. Journal of the South African Institute of Mining and Metallurgy, 91, 343–363.

    Google Scholar 

  • Hinckley, D. N. (1963). Variability in "crystallinity" values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays and Clay Minerals, 11, 229–235.

    Article  Google Scholar 

  • Jelsma, H., Perrit, S.H., Armstrong, R.A., & Ferreira, H.F. (2011). SHRIMP U-Pb zircon geochronology of basement rocks of the Angolan Shield, western Angola. In: Proceedings of the 23 rd CAG, Johannesburg. Council for Geoscience, Pretoria 203.

  • Kadir, S., & Kart, F. (2009). The occurrence and origin of the Sögüt kaolinite deposits in the Paleozoic Saricayaka granite-granodiorite complexes and overlying Neogene sediments (Bilecik, northwestern Turkey). Clays and Clay Minerals, 57, 311–329.

    Article  Google Scholar 

  • Laufer, F., Yariv, S., & Steinberg, M. (1984). The adsorption of quadrivalent cerium by kaolinite. Clay Minerals, 19, 137–149.

    Article  Google Scholar 

  • Liu, X., Liu, X., & Hu, Y. (2015). Investigation of the thermal behaviour and decomposition kinetics of kaolinite. Clay Minerals, 50, 199–209.

    Article  Google Scholar 

  • López-Galindo, A., Viseras, C., & Cerezo, P. (2007). Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Applied Clay Science, 36, 51–63.

    Article  Google Scholar 

  • MacKenzie, R. C. (1957). The differential thermal investigation of Clays (456 pp). London: Mineralogical Society (Clay Minerals Group).

    Google Scholar 

  • Mansa, R., Ngassa Piegang, G. B., & Detellier, C. (2017). Kaolinite aggregation in book-like structures from non-aqueous media. Clays and Clay Minerals, 65, 193–205.

    Article  Google Scholar 

  • Marques, M. M. (1977). Esboço das grandes unidades geomorfológicas de Angola (2ª aproximação). Instituto de Investigaçao Cientifica Tropical. Garcia de Orta, Sérvicio Geologico, Lisboa, 2(1), 41–43.

    Google Scholar 

  • Mayer, A., Hofmann, A. W., Sinigoi, S., & Morais, E. (2004). Mesoproterozoic Sm-Nd and U-Pb ages for the Kunene Anorthosite Complex of SW Angola. Precambrian Research, 133, 187–206.

    Article  Google Scholar 

  • McCourt, S., Armstrong, R. A., Jelsma, H., & Mapeo, R. B. M. (2013). New U-Pb SHRIMP ages from the Lubango region, SW Angola: insights into the Palaeoproterozoic evolution of the Angolan Shield, southern Congo Craton. Africa. Journal of the Geological Society of London, 170, 353–363.

    Article  Google Scholar 

  • McDonough, W. F., & Sun, S. S. (1995). The composition of the earth. Chemical Geology, 120, 223–225.

    Article  Google Scholar 

  • Montenegro de Andrade, M. (1954). Rochas graníticas de Angola. Memórias, série geológica IV. Ministério do Ultramar, 464 pp.

  • Moore, D.M. & Reynolds, R.C. Jr. (1997). X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, 332 pp.

  • Murray, H. H. (1999). Applied clay mineralogy today and tomorrow. Clay Minerals, 34, 39–49.

    Article  Google Scholar 

  • Murray, H. H. (2000). Traditional and new applications for kaolin, smectite, palygorskite: a general overview. Applied Clay Science, 17, 207–221.

    Article  Google Scholar 

  • Nesbitt, H. W. & Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48, 1523–1534.

    Article  Google Scholar 

  • Nkalih Mefire, A., Njoya, A., Yongue Fouateu, R., Mache, J. R., Tapon, N. A., Nzeukou Nzeugang, A., Melo Chinje, U., Pilate, P., Flament, P., Siniapkine, S., Ngono, A., & Fagel, N. (2015). Occurrences of kaolin in Koutaba (west Cameroon): Mineralogical and physicochemical characterization for use in ceramic products. Clay Minerals, 50, 593–606.

    Article  Google Scholar 

  • Nguie, G., Dedzo, G.K. & Detellier, C. (2016). Synthesis and catalytic application of palladium nanoparticles supported on kaolinite-based nanohybrid materials. Dalton Transactions, 45.

  • Njoya, A., Nkoumbou, C., Grosbois, C., Njopwouo, D., Njoya, D., Courtin-Nomade, A., Yvon, J., & Martin, F. (2006). Genesis of Mayouom kaolin deposit (western Cameroon). Applied Clay Science, 32, 125–140.

    Article  Google Scholar 

  • Nyakairu, G. W. A., & Koeberl, C. (2001). Mineralogical and chemical composition and distribution of rare earth elements in clay-rich sediments from central Uganda. Geochemical Journal, 35, 13–28.

    Article  Google Scholar 

  • Nyakairu, G. W. A., Koeberl, C., & Kurzweil, H. (2001). The Buwambo kaolin deposit in central Uganda: Mineralogical and chemical composition. NOTE. Geochemical Journal, 35, 245–256.

    Article  Google Scholar 

  • Petschick, R. (2004). MacDiff 4.2.5. http://servermac.geologie.uni-frankfurt.de/Rainer.html.

  • Phipps, J. S. (2014). Engineering minerals for performance applications: an industrial perspective. Clay Minerals, 49, 1–16.

    Article  Google Scholar 

  • Pruett, R. J. (2016). Kaolin deposits and their uses: Northern Brazil and Georgia, USA. Applied Clay Science, 131, 3–13.

    Article  Google Scholar 

  • Rudnick, R.L. & Gao, R. (2003). Composition of the continental crust. Pp. 1-64 in: The Crust (R.L. Rudnick, editor). Treatise of Geochemistry, 3. Elsevier-Pergamon, Oxford, UK.

  • Saikia, N., Bharali, D., Sengupta, P., Bordolo, D., Goswamee, R., Saikia, P., & Borthakur, P. C. (2003). Characterization, beneficiation and utilization of a kaolinite clay from Assam, India. Applied Clay Science, 24, 93–103.

    Article  Google Scholar 

  • Sanematsu, K. & Watanabe, Y. (2016). Characteristics and genesis of ion adsorption-type Rare Earth Element deposits. Reviews in Economic Geology, 18, 55–79.

    Google Scholar 

  • Savianno, G., Violo, M., Pieruccini, U., & Lopes da Silva, E. T. (2005). Kaolin deposits from the northern sector of the Cunene Anorthosite Complex (southern Angola). Clays and Clay Minerals, 53, 674–685.

    Article  Google Scholar 

  • Schroeder, P. A., & Erickson, G. (2014). Kaolin: From Ancient porcelains to nanocomposites. Elements, 10, 177–182.

    Article  Google Scholar 

  • Silva, M.V.S., (1973). Carta Geologica de Angola. Folha N 207 Gungo. Scale 1:100 000.

  • Silva, A.T.S.F. & Simões, M.V.C. (1980/1981). Geologia da região de Caluquembe (Angola), Livro de Homenagem ao Professor Doutor Carlos Teixeira pela sua jubilação, Bol. Soc. Geol. Portugal, 22, 363–375.

  • Stoch, L. (1974). Mineraly Ilaste (‘Clay Minerals’) (pp. 186–193). Warsaw: Geological Publishers.

    Google Scholar 

  • Taylor, S. R., & McLennan, S. H. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33, 241–265.

    Article  Google Scholar 

  • Thorez, J. (1975). Phyllosilicates and clay minerals. A laboratory handbook for their X-ray diffraction analysis (p. 580). France: Lelotte (Disno).

    Google Scholar 

  • TOPAS (2009). General Profile and Structure Analysis Software for Powder Diffraction Data, version 4.2, Bruker AXS Gmbh, Karlsruhe, Germany, 2009.

  • Wilson, J. R., Halls, C., & Spiro, B. (1997). A comparison between the China clay deposits of China and Corwall. Proceedings of the Ussher Society, 9, 195–200.

    Google Scholar 

  • Xiao, Y., Huang, L., Long, Z., Feng, Z., & Wang, L. (2016). Adsorption ability of rare earth elements on clay minerals and its practical performance. Journal of Rare Earths, 34(5), 543–548.

    Article  Google Scholar 

  • Young, R. A. & Hewat, A. W. (1988). Verification of the triclinic crystal structure of kaolinite. Clays and Clay Minerals, 36, 225–232.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the CGL2012-36263, CGL2006-12973 and CGL2009-13758 projects of the Ministerio de Ciencia e Innovación of the Spanish Government, the AGAUR 2014SGR01661 project of the Generalitat de Catalunya and by a FI grant to J. Xu (coded FI_B 00904) sponsored by the Secretaria d’Universitats i Recerca of the Departament d’Economia i Coneixement of the Generalitat de Catalunya. The authors acknowledge the Scientific and Technical Centers of the University of Barcelona (CCiTUB) for their support in carrying out experimental analyses. Anonymous reviewers and the editorial staff, are thanked for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tauler, E., Xu, J., Campeny, M. et al. A New Kaolin Deposit in Western Africa: Mineralogical and Compositional Features of Kaolinite from Caluquembe (Angola). Clays Clay Miner. 67, 228–243 (2019). https://doi.org/10.1007/s42860-019-00021-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-019-00021-4

Keywords

Navigation