Skip to main content

Clay Minerals in Skin Drug Delivery

Abstract

Clays have played an important role in medicine since the dawn of mankind and are still applied widely as active ingredients and/or excipients in pharmaceutical formulations. Due to their outstanding properties of large retention capacity, swelling and rheological properties, and relative low cost, they have been used widely as advanced carriers for the efficient delivery of drugs by modifying their release (rate and/or time), increasing the stability of the drug, improving the dissolution profile of a drug, or enhancing their intestinal permeability. In addition, recent studies have shed new light on the potential of clay minerals in the nanomedicine field due to their biocompatibility, beneficial effects of clay nanoparticles on cellular adhesion, proliferation, and differentiation. Use as active ingredients and excipients are exerted via the oral and topical administration pathways. Skin drug delivery represents an attractive alternative to the oral route, providing local and/or systemic drug delivery. Due to their complex structures, however, most drugs penetrate the human skin only with difficulty. Enormous efforts have been invested, therefore, in developing advanced drug delivery systems able to overcome the skin barrier. Most strategies require the use of singular materials with new properties. In particular, and on the basis of their inherent properties, clay minerals are ideal candidates for the development of intelligent skin drug delivery systems. In this article, the properties of clay materials and their use in the skin-addressed pharmaceutical field are reviewed. A brief introduction of skin physiology and biopharmaceutical features of penetration by a drug through the skin layers is also included and is designed to shed light on the optimum properties of ideal nanosystems for advanced skin drug delivery. Special attention is devoted to the pharmacological functions of clays and their biomedical applications in pelotherapy, wound healing, regenerative medicine, antimicrobial, and dermocosmetics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Aguzzi, C., Cerezo, P., Viseras, C., & Caramella, C. (2007). Use of clays as drug delivery systems: possibilities and limitations. Applied Clay Science, 36, 22–36.

    Google Scholar 

  • Aguzzi, C., Sánchez-Espejo, R., Cerezo, P., Machado, J., Bonferoni, C., Rossi, S., & Viseras, C. (2013). Networking and rheology of concentrated clay suspensions “matured” in mineral medicinal water. International Journal of Pharmaceutics, 453, 473–479.

    Article  Google Scholar 

  • Aguzzi, C., Sandri, G., Bonferoni, C., Cerezo, P., Rossi, S., Ferrari, F., & Viseras, C. (2014). Solid state characterisation of silver sulfadiazine loaded on montmorillonite/chitosan nanocomposite for wound healing. Colloids and Surfaces B: Biointerfaces, 113, 152–157.

    Article  Google Scholar 

  • Aguzzi, C., Sandri, G., Cerezo, P., Carazo, E., and Viseras, C. (2016) Health and medical applications of tubular clay minerals. Developments in clay science (pp. 708–725, Vol. 7). Amsterdam: Elsevier.

  • Alexander, P. (1973) In: R. G. Harry (Ed.), Harry's Cosmeticology. The principles and practice of modern cosmetics, Vol. I. 6th ed. London: Leonard Hill Books. (a) Sunscreen, Suntan and Sunburn Preparations, 328 pp.

  • Ambrogi, V., Pietrella, D., Nocchetti, M., Casagrande, S., Moretti, V., De Marco, S., & Ricci, M. (2017). Montmorillonite–chitosan–chlorhexidine composite films with antibiofilm activity and improved cytotoxicity for wound dressing. Journal of Colloid and Interface Science, 491, 265–272.

    Article  Google Scholar 

  • Aulton, M. E., & Taylor, K. M. (Eds.). (2017). Aulton’s pharmaceutics EBook: The design and manufacture of medicines. Amsterdam: Elsevier Health Sciences.

    Google Scholar 

  • Awad, M. E., López-Galindo, A., El-Rahmany, M. M., El-Desoky, H. M., & Viseras, C. (2017). Characterization of Egyptian kaolins for health-care uses. Applied Clay Science, 135, 176–189.

    Article  Google Scholar 

  • Barry, B. W. (1983). Dermatological Formulations (pp. 49–94). New York: Marcel Dekker.

    Google Scholar 

  • Baschini, M. T., Pettinari, G. R., Vallés, J. M., Aguzzi, C., Cerezo, P., López-Galindo, A., & Viseras, C. (2010). Suitability of natural sulphur-rich muds from Copahue (Argentina) for use as semisolid health care products. Applied Clay Science, 49, 205–212.

    Article  Google Scholar 

  • Beringhs, A. O. R., Rosa, J. M., Stulzer, H. K., Budal, R. M., & Sonaglio, D. (2013). Green clay and aloe vera peel-off facial masks: response surface methodology applied to the formulation design. AAPS PharmSciTech, 14, 445–455.

    Article  Google Scholar 

  • Bonferoni, M. C., Cerri, G., De’Gennaro, M., Juliano, C., & Caramella, C. (2007). Zn2+-exchanged clinoptilolite-rich rock as active carrier for antibiotics in anti-acne topical therapy: in-vitro characterization and preliminary formulation studies. Applied Clay Science, 36, 95–102.

    Article  Google Scholar 

  • Bonifacio, M. A., Gentile, P., Ferreira, A. M., Cometa, S., & De Giglio, E. (2017). Insight into halloysite nanotubes-loaded gellan gum hydrogels for soft tissue engineering applications. Carbohydrate Polymers, 163, 280–291.

    Article  Google Scholar 

  • British Chambers of Commerce (BCC) 2016. Annual Economic Report.

  • British Pharmacopoeia Commission (2018) British Pharmacopoeia. London: TSO.

  • Byrd, A. L., Belkaid, Y., & Segre, J. A. (2018). The human skin microbiome. Nature Reviews Microbiology, 16, 143–155.

    Article  Google Scholar 

  • Carazo, E., Borrego-Sánchez, A., García-Villén, F., Sánchez-Espejo, R., Cerezo, P., Aguzzi, C., and Viseras, C. (2018) Advanced inorganic nanosystems for skin drug delivery. The Chemical Record (pp. 891–899). https://doi.org/10.1002/tcr.201700061

  • Carretero, M. I. (2002). Clay minerals and their beneficial effects upon human health. A review. Applied Clay Science, 21, 155–163.

    Article  Google Scholar 

  • Carretero, M.I., Gomes, C., and Tateo, F. (2006). Clays and human health. In F. Bergaya, B.K.G. Theng, and G. Lagaly (Eds.). Handbook of clay science (pp. 717–741). Developments in Clay Science, 1, Elsevier, Amsterdam.

  • Carter, H.M. (1940) Fingernail Cleaning Composition. U.S. Patent No. 2,197,630. Washington DC: U.S. Patent and Trademark Office.

  • Cerri, G., de’Gennaro, M., Bonferoni, M.C., Caramella, C., and Juliano, C. (2006) Zn exchanged clinoptilolite rich rock as carrier for erythromycin in antiacne therapy: an in vitro evaluation. In: Book of Abstracts of the 7th International Conference on the Occurrence, Properties, and Utilization of Natural Zeolites Socorro, New Mexico, USA.

  • Cerri, G., De'Gennaro, M., Bonferoni, M. C., & Caramella, C. (2004). Zeolites in biomedical application: Zn-exchanged clinoptilolite-rich rock as active carrier for antibiotics in anti-acne topical therapy. Applied Clay Science, 27, 141–150.

    Article  Google Scholar 

  • Chen, H., Ye, Z., Sun, L., Li, X., Shi, S., Hu, J., & Wang, B. (2018). Synthesis of chitosan-based micelles for pH responsive drug release and antibacterial application. Carbohydrate Polymers, 189, 65–71.

    Article  Google Scholar 

  • Cornejo, J., Galán, E., and Ortega, M. (1990) Las arcillas en formulaciones farmacéuticas. Conferencias de IX y X Reuniones de la Sociedad Española de Arcillas, 51–68.

  • Couto, A., Fernandes, R., Cordeiro, M. N. S., Reis, S. S., Ribeiro, R. T., & Pessoa, A. M. (2014). Dermic diffusion and stratum corneum: a state of the art review of mathematical models. Journal of Controlled Release, 177, 74–83.

    Article  Google Scholar 

  • Da Silva, G. R., Da Silva-Cunha, A., Vieira, L. C., Silva, L. M., Ayres, E., Oréfice, R. L., & Behar-Cohen, F. (2013). Montmorillonite clay based polyurethane nanocomposite as substrate for retinal pigment epithelial cell growth. Journal of Materials Science: Materials in Medicine, 24, 1309–1317.

    Google Scholar 

  • Dário, G. M., da Silva, G. G., Gonçalves, D. L., Silveira, P., Junior, A. T., Angioletto, E., & Bernardin, A. M. (2014). Evaluation of the healing activity of therapeutic clay in rat skin wounds. Materials Science and Engineering: C, 43, 109–116.

    Article  Google Scholar 

  • De Vos, P. (2010). European materia medica in historical texts: longevity of a tradition and implications for future use. Journal of Ethnopharmacology, 132, 28–47.

    Article  Google Scholar 

  • Demir, A. K., Elçin, A. E., & Elçin, Y. M. (2018). Strontium-modified chitosan/montmorillonite composites as bone tissue engineering scaffold. Materials Science and Engineering: C, 89, 8–14.

    Article  Google Scholar 

  • Fakhrullin, R. F., & Lvov, Y. M. (2016). Halloysite clay nanotubes for tissue engineering. Future Medicine, 11, 2243–2246.

    Google Scholar 

  • Falkinham, J. O., Wall, T. E., Tanner, J. R., Tawaha, K., Alali, F. Q., Li, C., & Oberlies, N. H. (2009). Proliferation of antibiotic-producing bacteria and concomitant antibiotic production as the basis for the antibiotic activity of Jordan's red soils. Applied and Environmental Microbiology, 75, 2735–2741.

    Article  Google Scholar 

  • Fernández-González, M. V., Martín-García, J. M., Delgado, G., Párraga, J., Carretero, M. I., & Delgado, R. (2017). Physical properties of peloids prepared with medicinal mineral waters from Lanjarón Spa (Granada, Spain). Applied Clay Science, 135, 465–474.

    Article  Google Scholar 

  • Ferrell, R. E. (2008). Medicinal clay and spiritual healing. Clays and Clay Minerals, 56, 751–760.

    Article  Google Scholar 

  • Friedlander, L. R., Puri, N., Schoonen, A. A., & Karzai, W. (2015). The effect of pyrite on Escherichia coli in water: proof-of-concept for the elimination of waterborne bacteria by reactive minerals. Journal of Water and Health, 13, 42–53.

    Article  Google Scholar 

  • Gabriel, D.M. (1973) Vanishing and foundation creams in Harry’s Cosmeticology (6th ed.), The principles and practice of modern cosmetics (p. 83, vol. I). London: Leonard Hill Books.

  • Ghadiri, M., Chrzanowski, W., Lee, W. H., & Rohanizadeh, R. (2014). Layered silicate clay functionalized with amino acids: wound healing application. RSC Advances, 4, 35332–35343.

    Article  Google Scholar 

  • Ghadiri, M., Chrzanowski, W., & Rohanizadeh, R. (2015). Biomedical applications of cationic clay minerals. RSC Advances, 5, 29467–29481.

    Article  Google Scholar 

  • Gomes, C., Carretero, M. I., Pozo, M., Maraver, F., Cantista, P., Armijo, F., & Delgado, R. (2013). Peloids and pelotherapy: historical evolution, classification and glossary. Applied Clay Science, 75, 28–38.

    Article  Google Scholar 

  • Hamilton, A. R., Hutcheon, G. A., Roberts, M., & Gaskell, E. E. (2014). Formulation and antibacterial profiles of clay–ciprofloxacin composites. Applied Clay Science, 87, 129–135.

    Article  Google Scholar 

  • Haraguchi, K., Takehisa, T., & Ebato, M. (2006). Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels. Biomacromolecules, 7, 3267–3275.

    Article  Google Scholar 

  • Iannuccelli, V., Maretti, E., Bellini, A., Malferrari, D., Ori, G., Montorsi, M., & Leo, E. (2018). Organo-modified bentonite for gentamicin topical application: interlayer structure and in vivo skin permeation. Applied Clay Science, 158, 158–168.

    Article  Google Scholar 

  • Ijiri, H., Sato, K., Suzuki, M., and Hasegawa, Y. (2015) U.S. Patent No. 9,114,266. Washington, DC: U.S. Patent and Trademark Office.

  • Katti, K. S., Katti, D. R., & Dash, R. (2008). Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Biomedical Materials, 3, 034122.

    Article  Google Scholar 

  • Khiari, I., Mefteh, S., Sánchez-Espejo, R., Cerezo, P., Aguzzi, C., López-Galindo, A., & Viseras, C. (2014). Study of traditional Tunisian medina clays used in therapeutic and cosmetic mud-packs. Applied Clay Science, 101, 141–148.

    Article  Google Scholar 

  • Kommireddy, D. S., Ichinose, I., Lvov, Y. M., & Mills, D. K. (2005). Nanoparticle multilayers: surface modification for cell attachment and growth. Journal of Biomedical Nanotechnology, 1, 286–290.

    Article  Google Scholar 

  • Lam, P. L., Lee, K. K. H., Wong, R. S. M., Cheng, G. Y. M., Bian, Z. X., Chui, C. H., & Gambari, R. (2018). Recent advances on topical antimicrobials for skin and soft tissue infections and their safety concerns. Critical Reviews in Microbiology, 44, 40–78.

    Article  Google Scholar 

  • Liu, M., Dai, L., Shi, H., Xiong, S., & Zhou, C. (2015). In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering. Materials Science and Engineering: C, 49, 700–712.

    Article  Google Scholar 

  • Liu, M., Zhang, Y., Wu, C., Xiong, S., & Zhou, C. (2012). Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility. International Journal of Biological Macromolecules, 51, 566–575.

    Article  Google Scholar 

  • Lizarbe, M. A., Olmo, N., & Gavilanes, J. G. (1987). Outgrowth of fibroblasts on sepiolite-collagen complex. Biomaterials, 8, 35–37.

    Article  Google Scholar 

  • López-Galindo, A. and Viseras, C. (2004) Pharmaceutical and cosmetic applications of clays. In Interface science and technology (pp. 267–289, Vol. 1). Elsevier.

  • López-Galindo, A., Viseras, C., Aguzzi, C., and Cerezo, P. (2011) Pharmaceutical and cosmetic uses of fibrous clays. In F. Bergaya & G. Lagaly (Eds), Handbook of clay science (pp. 794 299–324), 2nd edition. Developments in clay science, 3, Elsevier, Amsterdam.

  • López-Galindo, A., Viseras, C., & Cerezo, P. (2007). Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Applied Clay Science, 36, 51–63.

    Article  Google Scholar 

  • Macgregor, A. (2013) Medicinal terra sigillata: a historical, geographical and typological review. In C. J. Duffin, R. T. J. Moody & C. Gardner-Thorpe (Eds), A history of geology and medicine (pp. 113–136). Special Publications, 375. London: Geological Society.

  • Mantle, D., Gok, M. A., & Lennard, T. W. (2001). Adverse and beneficial effects of plant extracts on skin and skin disorders. Adverse drug reactions and toxicological reviews, 20, 89–103.

    Google Scholar 

  • Mattioli, M., Giardini, L., Roselli, C., & Desideri, D. (2015). Mineralogical characterization of commercial clays used in cosmetics and possible risk for health. Applied Clay Science, 119, 449–454.

    Article  Google Scholar 

  • Mauro, N., Chiellini, F., Bartoli, C., Gazzarri, M., Laus, M., Antonioli, D., & Ferruti, P. (2017). RGD-mimic polyamidoamine–montmorillonite composites with tunable stiffness as scaffolds for bone tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 11, 2164–2175.

    Article  Google Scholar 

  • Medicamentarius, C. (1866). Pharmacophea Française (pp. 48–49). París: Jean-Baptiste Baillière.

    Google Scholar 

  • Mieszawska, A. J., Llamas, J. G., Vaiana, C. A., Kadakia, M. P., Naik, R. R., & Kaplan, D. L. (2011). Clay enriched silk biomaterials for bone formation. Acta Biomaterialia, 7, 3036–3041.

    Article  Google Scholar 

  • Ministerio de Sanidad y Consumo (2015) Agencia Española de Medicamentos y Productos Sanitarios (Eds). Real Farmacopea Española, 5ª Edición.

  • Mishra, R. K., Ramasamy, K., Lim, S. M., Ismail, M. F., & Majeed, A. B. A. (2014). Antimicrobial and in vitro wound healing properties of novel clay based bionanocomposite films. Journal of Materials Science: Materials in Medicine, 25, 1925–1939.

    Google Scholar 

  • Moraes, J. D. D., Bertolino, S. R. A., Cuffini, S. L., Ducart, D. F., Bretzke, P. E., & Leonardi, G. R. (2017). Clay minerals: properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purposes—a review. International Journal of Pharmaceutics, 534, 213–219.

    Article  Google Scholar 

  • Morrison, K. D., Misra, R., & Williams, L. B. (2016). Unearthing the antibacterial mechanism of medicinal clay: a geochemical approach to combating antibiotic resistance. Scientific Reports, 6, 19043.

    Article  Google Scholar 

  • Mousa, M., Evans, N. D., Oreffo, R. O., & Dawson, J. I. (2018). Clay nanoparticles for regenerative medicine and biomaterial design: a review of clay bioactivity. Biomaterials, 159, 204–214.

    Article  Google Scholar 

  • Mukhopadhyay, K., Rangan, K.K., & Sudarshan, T.S. (2018). Clay composites and their applications. U.S. Patent Application No. 10/046,079.

  • Naumenko, E. A., Guryanov, I. D., Yendluri, R., Lvov, Y. M., & Fakhrullin, R. F. (2016). Clay nanotube–biopolymer composite scaffolds for tissue engineering. Nanoscale, 8, 7257–7271.

    Article  Google Scholar 

  • Ng, K. W., & Lau, W. M. (2015). Skin deep: the basics of human skin structure and drug penetration. In N. Dragicevic & H. I. Maibach (Eds.), Percutaneous penetration enhancers chemical methods in penetration enhancement (pp. 3–11). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Ninan, N., Muthiah, M., Park, I. K., Wong, T. W., Thomas, S., & Grohens, Y. (2015). Natural polymer/inorganic material based hybrid scaffolds for skin wound healing. Polymer Reviews, 55, 453–490.

    Article  Google Scholar 

  • Noori, S., Kokabi, M., & Hassan, Z. M. (2018). Poly (vinyl alcohol)/chitosan/honey/clay responsive nanocomposite hydrogel wound dressing. Journal of Applied Polymer Science, 135(21) https://doi.org/10.1002/app.46311.

  • Olad, A., & Azhar, F. F. (2014). The synergetic effect of bioactive ceramic and nanoclay on the properties of chitosan–gelatin/nanohydroxyapatite–montmorillonite scaffold for bone tissue engineering. Ceramics International, 40, 10061–10072.

    Article  Google Scholar 

  • Olmo, N., Lizarbe, M. A., & Gavilanes, J. G. (1987). Biocompatibility and degradability of sepiolite-collagen complex. Biomaterials, 8, 67–69.

    Article  Google Scholar 

  • Otto, C.C. (2014) In vitro and in vivo assessment of the mechanism of action and efficacy of antibacterial clays for the treatment of cutaneous infections. Arizona State University.

  • Otto, C. C., & Haydel, S. E. (2013a). Microbicidal clays: composition, activity, mechanism of action, and therapeutic applications. In A. Méndez-Vilas (Ed.), Microbial pathogens and strategies for combating them: Science, technology and education (Vol. 2, pp. 1169–1180). Badajoz: Formatex Research Center.

    Google Scholar 

  • Otto, C. C., & Haydel, S. E. (2013b). Exchangeable ions are responsible for the in vitro antibacterial properties of natural clay mixtures. PLoS ONE, 8, e64068 https://doi.org/10.1371/journal.pone.0064068.

    Article  Google Scholar 

  • Otto, C. C., Kilbourne, J., & Haydel, S. E. (2016). Natural and ion-exchanged illite clays reduce bacterial burden and inflammation in cutaneous meticillin-resistant Staphylococcus aureus infections in mice. Journal of Medical Microbiology, 65, 19–27.

    Article  Google Scholar 

  • Otto, C. C., Koehl, J. L., Solanky, D., & Haydel, S. E. (2014). Metal ions, not metal-catalyzed oxidative stress, cause clay leachate antibacterial activity. PloS one, 9(12), e115172.

    Article  Google Scholar 

  • Perfitt, R.J. and Carimbocas, C.A.R. (2017) U.S. Patent No. 9,801,793. Washington, DC: U.S. Patent and Trademark Office.

  • Pesciaroli, C., Viseras, C., Aguzzi, C., Rodelas, B., & González-López, J. (2016). Study of bacterial community structure and diversity during the maturation process of a therapeutic peloid. Applied Clay Science, 132, 59–67.

    Article  Google Scholar 

  • Pharmacopeia, U. S. (2018) United States Pharmacopeia and National Formulary (USP 41-NF 36). Rockville, MD: United States Pharmacopeial Convention, 2016.

  • Popryadukhin, P. V., Dobrovolskaya, I. P., Yudin, V. E., Ivan’kova, E. M., Smolyaninov, A. B., & Smirnova, N. V. (2012). Composite materials based on chitosan and montmorillonite: prospects for use as a matrix for cultivation of stem and regenerative cells. Cell and Tissue Biology, 6, 82–88.

    Article  Google Scholar 

  • Prow, T. W., Grice, J. E., Lin, L. L., Faye, R., Butler, M., Becker, W., & Roberts, M. S. (2011). Nanoparticles and microparticles for skin drug delivery. Advanced Drug Delivery Reviews, 63, 470–491.

    Article  Google Scholar 

  • Quintela, A., Terroso, D., Da Silva, E. F., & Rocha, F. (2012). Certification and quality criteria of peloids used for therapeutic purposes. Clay Minerals, 47, 441–451.

    Article  Google Scholar 

  • Rangappa, S., Rangan, K. K., Sudarshan, T. S., & Murthy, S. N. (2017). Evaluation of lidocaine loaded clay based dermal patch systems. Journal of Drug Delivery Science and Technology, 39, 450–454.

    Article  Google Scholar 

  • Rebelo, M., Viseras, C., López-Galindo, A., Rocha, F., & da Silva, E. F. (2011). Rheological and thermal characterization of peloids made of selected Portuguese geological materials. Applied Clay Science, 52, 219–227.

    Article  Google Scholar 

  • Rochette, S., Doyon, S., and Elkurdi, M. (2017) U.S. Patent Application No. 15/293,733.

  • Saha, K., Butola, B. S., & Joshi, M. (2014). Synthesis and characterization of chlorhexidine acetate drug–montmorillonite intercalates for antibacterial applications. Applied Clay Science, 101, 477–483.

    Article  Google Scholar 

  • Sánchez-Espejo, R., Aguzzi, C., Cerezo, P., Salcedo, I., Lopez-Galindo, A., & Viseras, C. (2014). Folk pharmaceutical formulations in western Mediterranean: identification and safety of clays used in pelotherapy. Journal of Ethnopharmacology, 155, 810–814.

    Article  Google Scholar 

  • Sánchez-Espejo, R., Cerezo, P., Aguzzi, C., López-Galindo, A., Machado, J., & Viseras, C. (2015). Physicochemical and in vitro cation release relevance of therapeutic muds “maturation”. Applied Clay Science, 116, 1–7.

    Article  Google Scholar 

  • Sandri, G., Aguzzi, C., Rossi, S., Bonferoni, M. C., Bruni, G., Boselli, C., & Ferrari, F. (2017). Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomaterialia, 57, 216–224.

    Article  Google Scholar 

  • Sandri, G., Bonferoni, M. C., Ferrari, F., Rossi, S., Aguzzi, C., Mori, M., & Caramella, C. (2014). Montmorillonite–chitosan–silver sulfadiazine nanocomposites for topical treatment of chronic skin lesions: in vitro biocompatibility, antibacterial efficacy and gap closure cell motility properties. Carbohydrate Polymers, 102, 970–977.

    Article  Google Scholar 

  • Sandri, G., Bonferoni, M.C., Rossi, S., Ferrari, F., Aguzzi, C., Viseras, C., and Caramella, C. (2016) Clay minerals for tissue regeneration, repair, and engineering. In M.S. Ågren (Ed.). Wound healing biomaterial (pp. 385–402). Elsevier.

  • Sarfaraz, N. (Ed.). (2004). Handbook of pharmaceutical manufacturing formulations: Semisolid products (p. 113). Boca Raton, Florida, USA: CRC Press.

    Google Scholar 

  • Tao, L., Zhonglong, L., Ming, X., Zezheng, Y., Zhiyuan, L., Xiaojun, Z., & Jinwu, W. (2017). In vitro and in vivo studies of a gelatin/carboxymethyl chitosan/LAPONITE® composite scaffold for bone tissue engineering. RSC Advances, 7, 54100–54110.

    Article  Google Scholar 

  • Tenci, M., Rossi, S., Aguzzi, C., Carazo, E., Sandri, G., Bonferoni, M. C., & Ferrari, F. (2017). Carvacrol/clay hybrids loaded into in situ gelling films. International Journal of Pharmaceutics, 531, 676–688.

    Article  Google Scholar 

  • Timothy, G. R. A. Y., Cziryak, P., & Kljuic, A. (2015). U.S. Patent No., 9, 034,302.

    Google Scholar 

  • Tuba, T. (2018) Antibacterial Clay Compositions for Use as a Topical Ointment U.S. Patent Application No. 15/216,940. Washington, DC: U.S. Patent and Trademark Office.

  • Vaiana, C. A., Leonard, M. K., Drummy, L. F., Singh, K. M., Bubulya, A., Vaia, R. A., & Kadakia, M. P. (2011). Epidermal growth factor: layered silicate nanocomposites for tissue regeneration. Biomacromolecules, 12, 3139–3146.

    Article  Google Scholar 

  • Veniale, F., Bettero, A., Jobstraibizer, P. G., & Setti, M. (2007). Thermal muds: perspectives of innovations. Applied Clay Science, 36, 141–147.

    Article  Google Scholar 

  • Viseras, C., Aguzzi, C., and Cerezo, P. (2015) Medical and health applications of natural mineral nanotubes. In Natural mineral nanotubes: Properties and applications (pp. 437–448). Apple Academic Press Oakville, Canada and Waretown, New Jersey, USA.

  • Viseras, C., Aguzzi, C., Cerezo, P., & Bedmar, M. C. (2008). Biopolymer–clay nanocomposites for controlled drug delivery. Materials Science and Technology, 24, 1020–1026.

    Article  Google Scholar 

  • Viseras, C., Aguzzi, C., Cerezo, P., & Lopez-Galindo, A. (2007). Uses of clay minerals in semisolid health care and therapeutic products. Applied Clay Science, 36, 37–50.

    Article  Google Scholar 

  • Viseras, C., Cerezo, P., Sanchez, R., Salcedo, I., & Aguzzi, C. (2010). Current challenges in clay minerals for drug delivery. Applied Clay Science, 48, 291–295.

    Article  Google Scholar 

  • Wang, S., Castro, R., An, X., Song, C., Luo, Y., Shen, M., & Shi, X. (2012). Electrospun laponite-doped poly (lactic-co-glycolic acid) nanofibers for osteogenic differentiation of human mesenchymal stem cells. Journal of Materials Chemistry, 22, 23357–23367.

    Article  Google Scholar 

  • Wang, Z., Zhao, Y., Luo, Y., Wang, S., Shen, M., Tomás, H., & Shi, X. (2015). Attapulgite-doped electrospun poly (lactic-co-glycolic acid) nanofibers enable enhanced osteogenic differentiation of human mesenchymal stem cells. RSC Advances, 5, 2383–2391.

    Article  Google Scholar 

  • Williams, L. B., Haydel, R. F., Giese, R. F., & Eberl, D. D. (2008). Chemical and mineralogical characteristics of French green clays used for healing. Clays and Clay Minerals, 56, 437–452.

    Article  Google Scholar 

  • Williams, L. B., Holland, M., Eberl, D. D., Brunet, T., & Brunet de Courrsou, L. (2004). Killer clays! Natural antibacterial clay minerals. Mineralogical Society Bulletin, 139, 3–8.

    Google Scholar 

  • Williams, L. B., Metge, D. W., Eberl, D. D., Harvey, R. W., Turner, A. G., Prapaipong, P., & Poret-Peterson, A. T. (2011). What makes a natural clay antibacterial? Environmental Science & Technology, 45, 3768–3773.

    Article  Google Scholar 

  • Zhang, J.A., Zhang, Z., and Zhang, W. (2018) Burn ointment for promoting tissue regeneration and skin growth, and preparation method therefor. U.S. Patent Application No. 15/542,420.

  • Zou, Q., Cai, B., Li, J., Li, J., & Li, Y. (2017). In vitro and in vivo evaluation of the chitosan/Tur composite film for wound healing applications. Journal of Biomaterials Science, Polymer Edition, 28, 601–615.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Viseras.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Viseras, C., Carazo, E., Borrego-Sánchez, A. et al. Clay Minerals in Skin Drug Delivery. Clays Clay Miner. 67, 59–71 (2019). https://doi.org/10.1007/s42860-018-0003-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-018-0003-7

Keywords

  • Skin
  • Antimicrobials
  • Clay Minerals
  • Dermocosmetics
  • Pelotherapy
  • Regenerative Medicine
  • Skin Engineering
  • Wound Healing