Aguzzi, C., Cerezo, P., Viseras, C., & Caramella, C. (2007). Use of clays as drug delivery systems: possibilities and limitations. Applied Clay Science, 36, 22–36.
Google ScholarÂ
Aguzzi, C., Sánchez-Espejo, R., Cerezo, P., Machado, J., Bonferoni, C., Rossi, S., & Viseras, C. (2013). Networking and rheology of concentrated clay suspensions “matured” in mineral medicinal water. International Journal of Pharmaceutics, 453, 473–479.
ArticleÂ
Google ScholarÂ
Aguzzi, C., Sandri, G., Bonferoni, C., Cerezo, P., Rossi, S., Ferrari, F., & Viseras, C. (2014). Solid state characterisation of silver sulfadiazine loaded on montmorillonite/chitosan nanocomposite for wound healing. Colloids and Surfaces B: Biointerfaces, 113, 152–157.
ArticleÂ
Google ScholarÂ
Aguzzi, C., Sandri, G., Cerezo, P., Carazo, E., and Viseras, C. (2016) Health and medical applications of tubular clay minerals. Developments in clay science (pp. 708–725, Vol. 7). Amsterdam: Elsevier.
Alexander, P. (1973) In: R. G. Harry (Ed.), Harry's Cosmeticology. The principles and practice of modern cosmetics, Vol. I. 6th ed. London: Leonard Hill Books. (a) Sunscreen, Suntan and Sunburn Preparations, 328 pp.
Ambrogi, V., Pietrella, D., Nocchetti, M., Casagrande, S., Moretti, V., De Marco, S., & Ricci, M. (2017). Montmorillonite–chitosan–chlorhexidine composite films with antibiofilm activity and improved cytotoxicity for wound dressing. Journal of Colloid and Interface Science, 491, 265–272.
ArticleÂ
Google ScholarÂ
Aulton, M. E., & Taylor, K. M. (Eds.). (2017). Aulton’s pharmaceutics EBook: The design and manufacture of medicines. Amsterdam: Elsevier Health Sciences.
Google ScholarÂ
Awad, M. E., López-Galindo, A., El-Rahmany, M. M., El-Desoky, H. M., & Viseras, C. (2017). Characterization of Egyptian kaolins for health-care uses. Applied Clay Science, 135, 176–189.
ArticleÂ
Google ScholarÂ
Barry, B. W. (1983). Dermatological Formulations (pp. 49–94). New York: Marcel Dekker.
Google ScholarÂ
Baschini, M. T., Pettinari, G. R., Vallés, J. M., Aguzzi, C., Cerezo, P., López-Galindo, A., & Viseras, C. (2010). Suitability of natural sulphur-rich muds from Copahue (Argentina) for use as semisolid health care products. Applied Clay Science, 49, 205–212.
ArticleÂ
Google ScholarÂ
Beringhs, A. O. R., Rosa, J. M., Stulzer, H. K., Budal, R. M., & Sonaglio, D. (2013). Green clay and aloe vera peel-off facial masks: response surface methodology applied to the formulation design. AAPS PharmSciTech, 14, 445–455.
ArticleÂ
Google ScholarÂ
Bonferoni, M. C., Cerri, G., De’Gennaro, M., Juliano, C., & Caramella, C. (2007). Zn2+-exchanged clinoptilolite-rich rock as active carrier for antibiotics in anti-acne topical therapy: in-vitro characterization and preliminary formulation studies. Applied Clay Science, 36, 95–102.
ArticleÂ
Google ScholarÂ
Bonifacio, M. A., Gentile, P., Ferreira, A. M., Cometa, S., & De Giglio, E. (2017). Insight into halloysite nanotubes-loaded gellan gum hydrogels for soft tissue engineering applications. Carbohydrate Polymers, 163, 280–291.
ArticleÂ
Google ScholarÂ
British Chambers of Commerce (BCC) 2016. Annual Economic Report.
British Pharmacopoeia Commission (2018) British Pharmacopoeia. London: TSO.
Byrd, A. L., Belkaid, Y., & Segre, J. A. (2018). The human skin microbiome. Nature Reviews Microbiology, 16, 143–155.
ArticleÂ
Google ScholarÂ
Carazo, E., Borrego-Sánchez, A., GarcĂa-VillĂ©n, F., Sánchez-Espejo, R., Cerezo, P., Aguzzi, C., and Viseras, C. (2018) Advanced inorganic nanosystems for skin drug delivery. The Chemical Record (pp. 891–899). https://doi.org/10.1002/tcr.201700061
Carretero, M. I. (2002). Clay minerals and their beneficial effects upon human health. A review. Applied Clay Science, 21, 155–163.
ArticleÂ
Google ScholarÂ
Carretero, M.I., Gomes, C., and Tateo, F. (2006). Clays and human health. In F. Bergaya, B.K.G. Theng, and G. Lagaly (Eds.). Handbook of clay science (pp. 717–741). Developments in Clay Science, 1, Elsevier, Amsterdam.
Carter, H.M. (1940) Fingernail Cleaning Composition. U.S. Patent No. 2,197,630. Washington DC: U.S. Patent and Trademark Office.
Cerri, G., de’Gennaro, M., Bonferoni, M.C., Caramella, C., and Juliano, C. (2006) Zn exchanged clinoptilolite rich rock as carrier for erythromycin in antiacne therapy: an in vitro evaluation. In: Book of Abstracts of the 7th International Conference on the Occurrence, Properties, and Utilization of Natural Zeolites Socorro, New Mexico, USA.
Cerri, G., De'Gennaro, M., Bonferoni, M. C., & Caramella, C. (2004). Zeolites in biomedical application: Zn-exchanged clinoptilolite-rich rock as active carrier for antibiotics in anti-acne topical therapy. Applied Clay Science, 27, 141–150.
ArticleÂ
Google ScholarÂ
Chen, H., Ye, Z., Sun, L., Li, X., Shi, S., Hu, J., & Wang, B. (2018). Synthesis of chitosan-based micelles for pH responsive drug release and antibacterial application. Carbohydrate Polymers, 189, 65–71.
ArticleÂ
Google ScholarÂ
Cornejo, J., Galán, E., and Ortega, M. (1990) Las arcillas en formulaciones farmacéuticas. Conferencias de IX y X Reuniones de la Sociedad Española de Arcillas, 51–68.
Couto, A., Fernandes, R., Cordeiro, M. N. S., Reis, S. S., Ribeiro, R. T., & Pessoa, A. M. (2014). Dermic diffusion and stratum corneum: a state of the art review of mathematical models. Journal of Controlled Release, 177, 74–83.
ArticleÂ
Google ScholarÂ
Da Silva, G. R., Da Silva-Cunha, A., Vieira, L. C., Silva, L. M., Ayres, E., Oréfice, R. L., & Behar-Cohen, F. (2013). Montmorillonite clay based polyurethane nanocomposite as substrate for retinal pigment epithelial cell growth. Journal of Materials Science: Materials in Medicine, 24, 1309–1317.
Google ScholarÂ
Dário, G. M., da Silva, G. G., Gonçalves, D. L., Silveira, P., Junior, A. T., Angioletto, E., & Bernardin, A. M. (2014). Evaluation of the healing activity of therapeutic clay in rat skin wounds. Materials Science and Engineering: C, 43, 109–116.
ArticleÂ
Google ScholarÂ
De Vos, P. (2010). European materia medica in historical texts: longevity of a tradition and implications for future use. Journal of Ethnopharmacology, 132, 28–47.
ArticleÂ
Google ScholarÂ
Demir, A. K., Elçin, A. E., & Elçin, Y. M. (2018). Strontium-modified chitosan/montmorillonite composites as bone tissue engineering scaffold. Materials Science and Engineering: C, 89, 8–14.
ArticleÂ
Google ScholarÂ
Fakhrullin, R. F., & Lvov, Y. M. (2016). Halloysite clay nanotubes for tissue engineering. Future Medicine, 11, 2243–2246.
Google ScholarÂ
Falkinham, J. O., Wall, T. E., Tanner, J. R., Tawaha, K., Alali, F. Q., Li, C., & Oberlies, N. H. (2009). Proliferation of antibiotic-producing bacteria and concomitant antibiotic production as the basis for the antibiotic activity of Jordan's red soils. Applied and Environmental Microbiology, 75, 2735–2741.
ArticleÂ
Google ScholarÂ
Fernández-González, M. V., MartĂn-GarcĂa, J. M., Delgado, G., Párraga, J., Carretero, M. I., & Delgado, R. (2017). Physical properties of peloids prepared with medicinal mineral waters from LanjarĂłn Spa (Granada, Spain). Applied Clay Science, 135, 465–474.
ArticleÂ
Google ScholarÂ
Ferrell, R. E. (2008). Medicinal clay and spiritual healing. Clays and Clay Minerals, 56, 751–760.
ArticleÂ
Google ScholarÂ
Friedlander, L. R., Puri, N., Schoonen, A. A., & Karzai, W. (2015). The effect of pyrite on Escherichia coli in water: proof-of-concept for the elimination of waterborne bacteria by reactive minerals. Journal of Water and Health, 13, 42–53.
ArticleÂ
Google ScholarÂ
Gabriel, D.M. (1973) Vanishing and foundation creams in Harry’s Cosmeticology (6th ed.), The principles and practice of modern cosmetics (p. 83, vol. I). London: Leonard Hill Books.
Ghadiri, M., Chrzanowski, W., Lee, W. H., & Rohanizadeh, R. (2014). Layered silicate clay functionalized with amino acids: wound healing application. RSC Advances, 4, 35332–35343.
ArticleÂ
Google ScholarÂ
Ghadiri, M., Chrzanowski, W., & Rohanizadeh, R. (2015). Biomedical applications of cationic clay minerals. RSC Advances, 5, 29467–29481.
ArticleÂ
Google ScholarÂ
Gomes, C., Carretero, M. I., Pozo, M., Maraver, F., Cantista, P., Armijo, F., & Delgado, R. (2013). Peloids and pelotherapy: historical evolution, classification and glossary. Applied Clay Science, 75, 28–38.
ArticleÂ
Google ScholarÂ
Hamilton, A. R., Hutcheon, G. A., Roberts, M., & Gaskell, E. E. (2014). Formulation and antibacterial profiles of clay–ciprofloxacin composites. Applied Clay Science, 87, 129–135.
ArticleÂ
Google ScholarÂ
Haraguchi, K., Takehisa, T., & Ebato, M. (2006). Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels. Biomacromolecules, 7, 3267–3275.
ArticleÂ
Google ScholarÂ
Iannuccelli, V., Maretti, E., Bellini, A., Malferrari, D., Ori, G., Montorsi, M., & Leo, E. (2018). Organo-modified bentonite for gentamicin topical application: interlayer structure and in vivo skin permeation. Applied Clay Science, 158, 158–168.
ArticleÂ
Google ScholarÂ
Ijiri, H., Sato, K., Suzuki, M., and Hasegawa, Y. (2015) U.S. Patent No. 9,114,266. Washington, DC: U.S. Patent and Trademark Office.
Katti, K. S., Katti, D. R., & Dash, R. (2008). Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Biomedical Materials, 3, 034122.
ArticleÂ
Google ScholarÂ
Khiari, I., Mefteh, S., Sánchez-Espejo, R., Cerezo, P., Aguzzi, C., López-Galindo, A., & Viseras, C. (2014). Study of traditional Tunisian medina clays used in therapeutic and cosmetic mud-packs. Applied Clay Science, 101, 141–148.
ArticleÂ
Google ScholarÂ
Kommireddy, D. S., Ichinose, I., Lvov, Y. M., & Mills, D. K. (2005). Nanoparticle multilayers: surface modification for cell attachment and growth. Journal of Biomedical Nanotechnology, 1, 286–290.
ArticleÂ
Google ScholarÂ
Lam, P. L., Lee, K. K. H., Wong, R. S. M., Cheng, G. Y. M., Bian, Z. X., Chui, C. H., & Gambari, R. (2018). Recent advances on topical antimicrobials for skin and soft tissue infections and their safety concerns. Critical Reviews in Microbiology, 44, 40–78.
ArticleÂ
Google ScholarÂ
Liu, M., Dai, L., Shi, H., Xiong, S., & Zhou, C. (2015). In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering. Materials Science and Engineering: C, 49, 700–712.
ArticleÂ
Google ScholarÂ
Liu, M., Zhang, Y., Wu, C., Xiong, S., & Zhou, C. (2012). Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility. International Journal of Biological Macromolecules, 51, 566–575.
ArticleÂ
Google ScholarÂ
Lizarbe, M. A., Olmo, N., & Gavilanes, J. G. (1987). Outgrowth of fibroblasts on sepiolite-collagen complex. Biomaterials, 8, 35–37.
ArticleÂ
Google ScholarÂ
López-Galindo, A. and Viseras, C. (2004) Pharmaceutical and cosmetic applications of clays. In Interface science and technology (pp. 267–289, Vol. 1). Elsevier.
López-Galindo, A., Viseras, C., Aguzzi, C., and Cerezo, P. (2011) Pharmaceutical and cosmetic uses of fibrous clays. In F. Bergaya & G. Lagaly (Eds), Handbook of clay science (pp. 794 299–324), 2nd edition. Developments in clay science, 3, Elsevier, Amsterdam.
López-Galindo, A., Viseras, C., & Cerezo, P. (2007). Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Applied Clay Science, 36, 51–63.
ArticleÂ
Google ScholarÂ
Macgregor, A. (2013) Medicinal terra sigillata: a historical, geographical and typological review. In C. J. Duffin, R. T. J. Moody & C. Gardner-Thorpe (Eds), A history of geology and medicine (pp. 113–136). Special Publications, 375. London: Geological Society.
Mantle, D., Gok, M. A., & Lennard, T. W. (2001). Adverse and beneficial effects of plant extracts on skin and skin disorders. Adverse drug reactions and toxicological reviews, 20, 89–103.
Google ScholarÂ
Mattioli, M., Giardini, L., Roselli, C., & Desideri, D. (2015). Mineralogical characterization of commercial clays used in cosmetics and possible risk for health. Applied Clay Science, 119, 449–454.
ArticleÂ
Google ScholarÂ
Mauro, N., Chiellini, F., Bartoli, C., Gazzarri, M., Laus, M., Antonioli, D., & Ferruti, P. (2017). RGD-mimic polyamidoamine–montmorillonite composites with tunable stiffness as scaffolds for bone tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 11, 2164–2175.
ArticleÂ
Google ScholarÂ
Medicamentarius, C. (1866). Pharmacophea Française (pp. 48–49). ParĂs: Jean-Baptiste Baillière.
Google ScholarÂ
Mieszawska, A. J., Llamas, J. G., Vaiana, C. A., Kadakia, M. P., Naik, R. R., & Kaplan, D. L. (2011). Clay enriched silk biomaterials for bone formation. Acta Biomaterialia, 7, 3036–3041.
ArticleÂ
Google ScholarÂ
Ministerio de Sanidad y Consumo (2015) Agencia Española de Medicamentos y Productos Sanitarios (Eds). Real Farmacopea Española, 5ª Edición.
Mishra, R. K., Ramasamy, K., Lim, S. M., Ismail, M. F., & Majeed, A. B. A. (2014). Antimicrobial and in vitro wound healing properties of novel clay based bionanocomposite films. Journal of Materials Science: Materials in Medicine, 25, 1925–1939.
Google ScholarÂ
Moraes, J. D. D., Bertolino, S. R. A., Cuffini, S. L., Ducart, D. F., Bretzke, P. E., & Leonardi, G. R. (2017). Clay minerals: properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purposes—a review. International Journal of Pharmaceutics, 534, 213–219.
ArticleÂ
Google ScholarÂ
Morrison, K. D., Misra, R., & Williams, L. B. (2016). Unearthing the antibacterial mechanism of medicinal clay: a geochemical approach to combating antibiotic resistance. Scientific Reports, 6, 19043.
ArticleÂ
Google ScholarÂ
Mousa, M., Evans, N. D., Oreffo, R. O., & Dawson, J. I. (2018). Clay nanoparticles for regenerative medicine and biomaterial design: a review of clay bioactivity. Biomaterials, 159, 204–214.
ArticleÂ
Google ScholarÂ
Mukhopadhyay, K., Rangan, K.K., & Sudarshan, T.S. (2018). Clay composites and their applications. U.S. Patent Application No. 10/046,079.
Naumenko, E. A., Guryanov, I. D., Yendluri, R., Lvov, Y. M., & Fakhrullin, R. F. (2016). Clay nanotube–biopolymer composite scaffolds for tissue engineering. Nanoscale, 8, 7257–7271.
ArticleÂ
Google ScholarÂ
Ng, K. W., & Lau, W. M. (2015). Skin deep: the basics of human skin structure and drug penetration. In N. Dragicevic & H. I. Maibach (Eds.), Percutaneous penetration enhancers chemical methods in penetration enhancement (pp. 3–11). Berlin, Heidelberg: Springer.
Google ScholarÂ
Ninan, N., Muthiah, M., Park, I. K., Wong, T. W., Thomas, S., & Grohens, Y. (2015). Natural polymer/inorganic material based hybrid scaffolds for skin wound healing. Polymer Reviews, 55, 453–490.
ArticleÂ
Google ScholarÂ
Noori, S., Kokabi, M., & Hassan, Z. M. (2018). Poly (vinyl alcohol)/chitosan/honey/clay responsive nanocomposite hydrogel wound dressing. Journal of Applied Polymer Science, 135(21) https://doi.org/10.1002/app.46311.
Olad, A., & Azhar, F. F. (2014). The synergetic effect of bioactive ceramic and nanoclay on the properties of chitosan–gelatin/nanohydroxyapatite–montmorillonite scaffold for bone tissue engineering. Ceramics International, 40, 10061–10072.
ArticleÂ
Google ScholarÂ
Olmo, N., Lizarbe, M. A., & Gavilanes, J. G. (1987). Biocompatibility and degradability of sepiolite-collagen complex. Biomaterials, 8, 67–69.
ArticleÂ
Google ScholarÂ
Otto, C.C. (2014) In vitro and in vivo assessment of the mechanism of action and efficacy of antibacterial clays for the treatment of cutaneous infections. Arizona State University.
Otto, C. C., & Haydel, S. E. (2013a). Microbicidal clays: composition, activity, mechanism of action, and therapeutic applications. In A. Méndez-Vilas (Ed.), Microbial pathogens and strategies for combating them: Science, technology and education (Vol. 2, pp. 1169–1180). Badajoz: Formatex Research Center.
Google ScholarÂ
Otto, C. C., & Haydel, S. E. (2013b). Exchangeable ions are responsible for the in vitro antibacterial properties of natural clay mixtures. PLoS ONE, 8, e64068 https://doi.org/10.1371/journal.pone.0064068.
ArticleÂ
Google ScholarÂ
Otto, C. C., Kilbourne, J., & Haydel, S. E. (2016). Natural and ion-exchanged illite clays reduce bacterial burden and inflammation in cutaneous meticillin-resistant Staphylococcus aureus infections in mice. Journal of Medical Microbiology, 65, 19–27.
ArticleÂ
Google ScholarÂ
Otto, C. C., Koehl, J. L., Solanky, D., & Haydel, S. E. (2014). Metal ions, not metal-catalyzed oxidative stress, cause clay leachate antibacterial activity. PloS one, 9(12), e115172.
ArticleÂ
Google ScholarÂ
Perfitt, R.J. and Carimbocas, C.A.R. (2017) U.S. Patent No. 9,801,793. Washington, DC: U.S. Patent and Trademark Office.
Pesciaroli, C., Viseras, C., Aguzzi, C., Rodelas, B., & González-López, J. (2016). Study of bacterial community structure and diversity during the maturation process of a therapeutic peloid. Applied Clay Science, 132, 59–67.
ArticleÂ
Google ScholarÂ
Pharmacopeia, U. S. (2018) United States Pharmacopeia and National Formulary (USP 41-NF 36). Rockville, MD: United States Pharmacopeial Convention, 2016.
Popryadukhin, P. V., Dobrovolskaya, I. P., Yudin, V. E., Ivan’kova, E. M., Smolyaninov, A. B., & Smirnova, N. V. (2012). Composite materials based on chitosan and montmorillonite: prospects for use as a matrix for cultivation of stem and regenerative cells. Cell and Tissue Biology, 6, 82–88.
ArticleÂ
Google ScholarÂ
Prow, T. W., Grice, J. E., Lin, L. L., Faye, R., Butler, M., Becker, W., & Roberts, M. S. (2011). Nanoparticles and microparticles for skin drug delivery. Advanced Drug Delivery Reviews, 63, 470–491.
ArticleÂ
Google ScholarÂ
Quintela, A., Terroso, D., Da Silva, E. F., & Rocha, F. (2012). Certification and quality criteria of peloids used for therapeutic purposes. Clay Minerals, 47, 441–451.
ArticleÂ
Google ScholarÂ
Rangappa, S., Rangan, K. K., Sudarshan, T. S., & Murthy, S. N. (2017). Evaluation of lidocaine loaded clay based dermal patch systems. Journal of Drug Delivery Science and Technology, 39, 450–454.
ArticleÂ
Google ScholarÂ
Rebelo, M., Viseras, C., López-Galindo, A., Rocha, F., & da Silva, E. F. (2011). Rheological and thermal characterization of peloids made of selected Portuguese geological materials. Applied Clay Science, 52, 219–227.
ArticleÂ
Google ScholarÂ
Rochette, S., Doyon, S., and Elkurdi, M. (2017) U.S. Patent Application No. 15/293,733.
Saha, K., Butola, B. S., & Joshi, M. (2014). Synthesis and characterization of chlorhexidine acetate drug–montmorillonite intercalates for antibacterial applications. Applied Clay Science, 101, 477–483.
ArticleÂ
Google ScholarÂ
Sánchez-Espejo, R., Aguzzi, C., Cerezo, P., Salcedo, I., Lopez-Galindo, A., & Viseras, C. (2014). Folk pharmaceutical formulations in western Mediterranean: identification and safety of clays used in pelotherapy. Journal of Ethnopharmacology, 155, 810–814.
ArticleÂ
Google ScholarÂ
Sánchez-Espejo, R., Cerezo, P., Aguzzi, C., López-Galindo, A., Machado, J., & Viseras, C. (2015). Physicochemical and in vitro cation release relevance of therapeutic muds “maturation”. Applied Clay Science, 116, 1–7.
ArticleÂ
Google ScholarÂ
Sandri, G., Aguzzi, C., Rossi, S., Bonferoni, M. C., Bruni, G., Boselli, C., & Ferrari, F. (2017). Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomaterialia, 57, 216–224.
ArticleÂ
Google ScholarÂ
Sandri, G., Bonferoni, M. C., Ferrari, F., Rossi, S., Aguzzi, C., Mori, M., & Caramella, C. (2014). Montmorillonite–chitosan–silver sulfadiazine nanocomposites for topical treatment of chronic skin lesions: in vitro biocompatibility, antibacterial efficacy and gap closure cell motility properties. Carbohydrate Polymers, 102, 970–977.
ArticleÂ
Google ScholarÂ
Sandri, G., Bonferoni, M.C., Rossi, S., Ferrari, F., Aguzzi, C., Viseras, C., and Caramella, C. (2016) Clay minerals for tissue regeneration, repair, and engineering. In M.S. Ågren (Ed.). Wound healing biomaterial (pp. 385–402). Elsevier.
Sarfaraz, N. (Ed.). (2004). Handbook of pharmaceutical manufacturing formulations: Semisolid products (p. 113). Boca Raton, Florida, USA: CRC Press.
Google ScholarÂ
Tao, L., Zhonglong, L., Ming, X., Zezheng, Y., Zhiyuan, L., Xiaojun, Z., & Jinwu, W. (2017). In vitro and in vivo studies of a gelatin/carboxymethyl chitosan/LAPONITE® composite scaffold for bone tissue engineering. RSC Advances, 7, 54100–54110.
ArticleÂ
Google ScholarÂ
Tenci, M., Rossi, S., Aguzzi, C., Carazo, E., Sandri, G., Bonferoni, M. C., & Ferrari, F. (2017). Carvacrol/clay hybrids loaded into in situ gelling films. International Journal of Pharmaceutics, 531, 676–688.
ArticleÂ
Google ScholarÂ
Timothy, G. R. A. Y., Cziryak, P., & Kljuic, A. (2015). U.S. Patent No., 9, 034,302.
Google ScholarÂ
Tuba, T. (2018) Antibacterial Clay Compositions for Use as a Topical Ointment U.S. Patent Application No. 15/216,940. Washington, DC: U.S. Patent and Trademark Office.
Vaiana, C. A., Leonard, M. K., Drummy, L. F., Singh, K. M., Bubulya, A., Vaia, R. A., & Kadakia, M. P. (2011). Epidermal growth factor: layered silicate nanocomposites for tissue regeneration. Biomacromolecules, 12, 3139–3146.
ArticleÂ
Google ScholarÂ
Veniale, F., Bettero, A., Jobstraibizer, P. G., & Setti, M. (2007). Thermal muds: perspectives of innovations. Applied Clay Science, 36, 141–147.
ArticleÂ
Google ScholarÂ
Viseras, C., Aguzzi, C., and Cerezo, P. (2015) Medical and health applications of natural mineral nanotubes. In Natural mineral nanotubes: Properties and applications (pp. 437–448). Apple Academic Press Oakville, Canada and Waretown, New Jersey, USA.
Viseras, C., Aguzzi, C., Cerezo, P., & Bedmar, M. C. (2008). Biopolymer–clay nanocomposites for controlled drug delivery. Materials Science and Technology, 24, 1020–1026.
ArticleÂ
Google ScholarÂ
Viseras, C., Aguzzi, C., Cerezo, P., & Lopez-Galindo, A. (2007). Uses of clay minerals in semisolid health care and therapeutic products. Applied Clay Science, 36, 37–50.
ArticleÂ
Google ScholarÂ
Viseras, C., Cerezo, P., Sanchez, R., Salcedo, I., & Aguzzi, C. (2010). Current challenges in clay minerals for drug delivery. Applied Clay Science, 48, 291–295.
ArticleÂ
Google ScholarÂ
Wang, S., Castro, R., An, X., Song, C., Luo, Y., Shen, M., & Shi, X. (2012). Electrospun laponite-doped poly (lactic-co-glycolic acid) nanofibers for osteogenic differentiation of human mesenchymal stem cells. Journal of Materials Chemistry, 22, 23357–23367.
ArticleÂ
Google ScholarÂ
Wang, Z., Zhao, Y., Luo, Y., Wang, S., Shen, M., Tomás, H., & Shi, X. (2015). Attapulgite-doped electrospun poly (lactic-co-glycolic acid) nanofibers enable enhanced osteogenic differentiation of human mesenchymal stem cells. RSC Advances, 5, 2383–2391.
ArticleÂ
Google ScholarÂ
Williams, L. B., Haydel, R. F., Giese, R. F., & Eberl, D. D. (2008). Chemical and mineralogical characteristics of French green clays used for healing. Clays and Clay Minerals, 56, 437–452.
ArticleÂ
Google ScholarÂ
Williams, L. B., Holland, M., Eberl, D. D., Brunet, T., & Brunet de Courrsou, L. (2004). Killer clays! Natural antibacterial clay minerals. Mineralogical Society Bulletin, 139, 3–8.
Google ScholarÂ
Williams, L. B., Metge, D. W., Eberl, D. D., Harvey, R. W., Turner, A. G., Prapaipong, P., & Poret-Peterson, A. T. (2011). What makes a natural clay antibacterial? Environmental Science & Technology, 45, 3768–3773.
ArticleÂ
Google ScholarÂ
Zhang, J.A., Zhang, Z., and Zhang, W. (2018) Burn ointment for promoting tissue regeneration and skin growth, and preparation method therefor. U.S. Patent Application No. 15/542,420.
Zou, Q., Cai, B., Li, J., Li, J., & Li, Y. (2017). In vitro and in vivo evaluation of the chitosan/Tur composite film for wound healing applications. Journal of Biomaterials Science, Polymer Edition, 28, 601–615.
ArticleÂ
Google ScholarÂ