Skip to main content

Advertisement

Log in

Moisture-Dependent Engineering Characterization of Psyllium Seeds: Physical, Frictional, Aerodynamic, Mechanical, and Thermal Properties

  • Original Article
  • Published:
Journal of Biosystems Engineering Aims and scope Submit manuscript

Abstract

Purpose

The analysis of the engineering properties of food and agricultural products is necessary to design processing, sorting, handling, sizing, and other postharvesting equipment.

Methods

The engineering properties of psyllium seeds (PSs) as a function of moisture content (MC, 4.32–20.38% d.b.) were assessed. The regression linear and polynomial models with high coefficients of determination were also fitted to the data to explain the significant effect of moisture content on different engineering properties.

Results

An increase in axial dimensions with increasing MC led to a significant increase in volume (1.27–1.45 mm3), surface area (4.51–4.98 mm2), and sphericity (51.7–52.5%) of PSs. However, the bulk (654.16–601.35 kg/m3) and true (1265.1–1074.7 kg/m3) densities and porosity (48.29–44.04%) were reduced by increasing MC. Increasing the MC led to a significant increase in repose angle (32.30–39.61°) and terminal velocity (1.51–2.41 m/s). The galvanized iron sheet (0.423–0.519) had the highest static friction coefficients compared to glass (0.261–0.332), stainless steel (0.369–0.426), and plywood (0.393–0.458) surfaces. The rupture force was significantly decreased by increasing MC. Under the vertical loading orientation, PSs required less compressive force to rupture compared to the horizontal loading orientation. The specific heat (1.56–3.12 kJ/kg K°) and thermal conductivity (0.235–0.322 W/m K°) were increased by increasing MC, while the thermal diffusivity (2.3–1.7 × 10−4 m2/s) decreased.

Conclusions

Since MC had a key role in changing engineering properties of PSs, the resulted regression equations can be applied for extracting mucilaginous polysaccharides from PSs grown in other geographical areas with different weather conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

PSs:

psyllium seeds

MC:

moisture content (% w.b.)

EAR:

emptying angle of repose (°)

SFCs:

static friction coefficients

GS:

glass

SS:

stainless steel

PW:

plywood

GIS:

galvanized iron sheet

References

  • Ahmadi, R., Kalbasi-Ashtari, A., & Gharibzahedi, S. (2012). Physical properties of psyllium seed. International Agrophysics, 26(1), 91–93.

    Google Scholar 

  • Akharume, F., & Aregbesola, O. A. (2019). Moisture dependent physico-mechanical and aerodynamic properties of roselle calyxes (Hibiscus sabdariffa). Journal of Postharvest Technology, 7(1), 84–92.

    Google Scholar 

  • Akinci, I., Ozdemir, F., Topuz, A., Kabas, O., & Canakci, M. (2004). Some physical and nutritional properties of Juniperus drupacea fruits. Journal of Food Engineering, 65(3), 325–331.

    Google Scholar 

  • Altuntas, E., & Özkan, Y. (2008). Physical and mechanical properties of some walnut (Juglans regia L.) cultivars. International Journal of Food Engineering, 4(4), 1–16.

    Google Scholar 

  • Amini, S., Yousefi, S., & Moghari, A. A. (2018). Development and quality characterization of liquid Kashk by incorporating psyllium (Plantago ovata Forsk) hydrocolloid gel. Journal of Food Measurement and Characterization, 12(3), 1669–1677.

    Google Scholar 

  • Aviara, N. A., Haque, M. A., & Ogunjimi, L. A. O. (2008). Thermal properties of guna seed. International Agrophysics, 22(4), 291–297.

    Google Scholar 

  • Cetin, M. (2007). Physical properties of barbunia bean (Phaseolus vulgaris L. cv. ‘Barbunia’) seed. Journal of Food Engineering, 80(1), 353–358.

    MathSciNet  Google Scholar 

  • Chandrasekar, V., & Viswanathan, R. (1999). Physical and thermal properties of coffee. Journal of Agricultural Engineering Research, 73(3), 227–234.

    Google Scholar 

  • Chong, R. W. W., Ball, M., McRae, C., & Packer, N. H. (2019). Comparing the chemical composition of dietary fibres prepared from sugarcane, psyllium husk and wheat dextrin. Food Chemistry, 298, 125032.

    Google Scholar 

  • Dak, M., Jaaffrey, S. N. A., & Gupta, R. B. (2014). Moisture-dependent physical properties of dried pomegranate arils. Journal of Food Measurement and Characterization, 8(3), 234–240.

    Google Scholar 

  • Dursun, I., Tuğrul, K. M., & Dursun, E. (2007). Some physical properties of sugarbeet seed. Journal of Stored Products Research, 43(2), 149–155.

    Google Scholar 

  • Fos'hat, M., Etemad, V., Gharibzahedi, S. M. T., & Ghahderijani, M. (2011). Physical, mechanical and aerodynamic properties of acorn (Quercus suber L.) as potentials for development of processing machines. Australian Journal of Crop Science, 5(4), 473–478.

  • Gao, Y., Janes, M. E., Chaiya, B., Brennan, M. A., Brennan, C. S., & Prinyawiwatkul, W. (2018). Gluten-free bakery and pasta products: Prevalence and quality improvement. International Journal of Food Science & Technology, 53(1), 19–32.

    Google Scholar 

  • Gharibzahedi, S. M. T., Mousavi, S. M., & Razavi, S. H. (2009). Evaluation of physical, mechanical and nutritional properties of sesame seed (Sesamum Indicum L.) in different moisture contents for the optimization of the processing operation. Electronic Journal of Food Processing and Preservation, 1(3), 101–118.

    Google Scholar 

  • Gharibzahedi, S. M. T., Etemad, V., & Mirarab-Razi, J. (2010a). Study on some engineering attributes of pine nut (Pinus pinea) to the design of processing equipment. Research in Agricultural Engineering, 56(3), 99–106.

    Google Scholar 

  • Gharibzahedi, S. M. T., Mousavi, S. M., Moayedi, A., Garavand, A. T., & Alizadeh, S. M. (2010b). Moisture-dependent engineering properties of black cumin (Nigella sativa L.) seed. Agricultural Engineering International: CIGR Journal, 12(1), 194–202.

    Google Scholar 

  • Gharibzahedi, S. M. T., Ghasemlou, M., Razavi, S. H., Jafarii, S. M., & Faraji, K. (2011a). Moisture-dependent physical properties and biochemical composition of red lentil seeds. International Agrophysics, 25(4), 343–347.

    Google Scholar 

  • Gharibzahedi, S. M. T., Mousavi, S. M., & Ghahderijani, M. (2011b). A survey on moisture-dependent physical properties of castor seed (Ricinus communis L.). Australian Journal of Crop Science, 5(1), 1–7.

    Google Scholar 

  • Gharibzahedi, S. M. T., Mousavi, S. M., Ghahderijani, M., & Dadashpour, A. (2012a). Assessment of physical and chemical aspects of new Persian walnut cultivars to optimize process conditions. International Journal of Food Engineering, 8(1), 12.

    Google Scholar 

  • Gharibzahedi, S. M. T., Mousavi, S. M., Hamedi, M., & Khodaiyan, F. (2012b). Comparative analysis of new Persian walnut cultivars: Nut/kernel geometrical, gravimetrical, frictional and mechanical attributes and kernel chemical composition. Scientia Horticulturae, 135, 202–209.

    Google Scholar 

  • Gharibzahedi, S. M. T., Mousavi, S. M., Hamedi, M., Khodaiyan, F., & Dadashpour, A. (2012c). Mechanical behavior of Persian walnut and its kernel under compression loading: An experimental and computational study. Journal of Food Processing and Preservation, 36(5), 423–430.

    Google Scholar 

  • Gharibzahedi, S. M. T., Mousavi, S. M., Jouki, M., & Ghahderijani, M. (2012d). Analysis of physicochemical and thermo-mechanical characteristics of Iranian black seed (Nigella oxypetala Boiss). International Journal of Food Engineering, 8(3), 14.

    Google Scholar 

  • Gharibzahedi, S. M. T., Ansarifard, I., Hasanabadi, Y. S., Ghahderijani, M., & Yousefi, R. (2013a). Physicochemical properties of Moringa peregrina seed and its oil. Quality Assurance and Safety of Crops & Foods, 5(4), 303–309.

    Google Scholar 

  • Gharibzahedi, S. M. T., Mousavi, S. M., Hamedi, M., & Khodaiyan, F. (2013b). Engineering characterization of Persian walnut and its kernel (Juglans regia L.) for obtaining high quality produce. Quality Assurance and Safety of Crops & Foods, 5(2), 145–156.

    Google Scholar 

  • Gharibzahedi, S. M. T., Razavi, S. H., & Mousavi, S. M. (2013c). Psyllium husk gum: An attractive carbohydrate biopolymer for the production of stable canthaxanthin emulsions. Carbohydrate Polymers, 92(2), 2002–2011.

    Google Scholar 

  • Gharibzahedi, S. M. T., Emam-Djomeh, Z., Razavi, S. H., & Jafari, S. M. (2014a). Mechanical behavior of lentil seeds in relation to their physicochemical and microstructural characteristics. International Journal of Food Properties, 17(3), 545–558.

    Google Scholar 

  • Gharibzahedi, S. M. T., Ghahderijani, M., & Lajevardi, Z. S. (2014b). Specific heat, thermal conductivity and thermal diffusivity of red lentil seed as a function of moisture content. Journal of Food Processing and Preservation, 38(4), 1807–1811.

    Google Scholar 

  • Ghodki, B. M., Tangirala, A. S., & Goswami, T. K. (2016). Moisture dependent thermal properties of cassia. Cogent Food & Agriculture, 2(1), 1227110.

    Google Scholar 

  • Guo, Q., Cui, S. W., Wang, Q., Goff, H. D., & Smith, A. (2009). Microstructure and rheological properties of psyllium polysaccharide gel. Food Hydrocolloids, 23(6), 1542–1547.

    Google Scholar 

  • Hamdani, A., Rather, S. A., Shah, A., Gani, A., Wani, S. M., Masoodi, F. A., & Gani, A. (2014). Physical properties of barley and oats cultivars grown in high altitude Himalayan regions of India. Journal of Food Measurement and Characterization, 8(4), 296–304.

    Google Scholar 

  • Hashemi, F. S., Gharibzahedi, S. M. T., & Hamishehkar, H. (2015). The effect of high methoxyl pectin and gellan including psyllium gel on Doogh stability. RSC Advances, 5(53), 42346–42353.

    Google Scholar 

  • Hsu, M. H., Mannapperuma, J. D., & Singh, R. P. (1991). Physical and thermal properties of pistachios. Journal of Agricultural Engineering Research, 49, 311–321.

    Google Scholar 

  • Jain, R. K., & Bal, S. (1997). Properties of pearl millet. Journal of Agricultural Engineering Research, 66(2), 85–91.

    Google Scholar 

  • Jalanka, J., Major, G., Murray, K., Singh, G., Nowak, A., Kurtz, C., Silos-Santiago, I., Johnston, J., de Vos, W., & Spiller, R. (2019). The effect of psyllium husk on intestinal microbiota in constipated patients and healthy controls. International Journal of Molecular Sciences, 20(2), 433.

    Google Scholar 

  • Jan, K. N., Panesar, P. S., & Singh, S. (2019). Effect of moisture content on the physical and mechanical properties of quinoa seeds. International Agrophysics, 33(1), 41–48.

    Google Scholar 

  • Kiani, M. K. D., Minaei, S., Maghsoudi, H., & Varnamkhasti, M. G. (2008). Moisture dependent physical properties of red bean (Phaseolus vulgaris L.) grains. International Agrophysics, 22(3), 231–237.

    Google Scholar 

  • Lertpipopmetha, K., Kongkamol, C., & Sripongpun, P. (2018). Effect of psyllium fiber supplementation on diarrhea incidence in enteral tube-fed patients: A prospective, randomized, and controlled trial. Journal of Parenteral and Enteral Nutrition., 43, 759–767. https://doi.org/10.1002/jpen.1489.

    Article  Google Scholar 

  • Mahapatra, A. K., Ekefre, D. E., Degala, H. L., Punnuri, S. M., & Terrill, T. H. (2019). Moisture-dependent physical and thermal properties of Sericea lespedeza seeds. Applied Engineering in Agriculture, 35(3), 389–397.

    Google Scholar 

  • Mamani, I. (2015). Modeling of thermal properties of Persian walnut kernel as a function of moisture content and temperature using response surface methodology. Journal of Food Processing and Preservation, 39(6), 2762–2772.

    Google Scholar 

  • Mohsenin, N. N. (1986). Physical properties of plant and animal materials. New York: Gordon and Breach science publishers.

    Google Scholar 

  • Omobuwajo, T. O., Sanni, L. A., & Olajide, J. O. (2000). Physical properties of ackee apple (Blighia sapida) seeds. Journal of Food Engineering, 45(1), 43–48.

    Google Scholar 

  • Pal, S., McKay, J., Jane, M., & Ho, S. (2019). Using Psyllium to prevent and treat obesity comorbidities. In Nutrition in the Prevention and Treatment of Abdominal Obesity (pp. 245–260). Academic Press.

  • Patel, M. K., Tanna, B., Gupta, H., Mishra, A., & Jha, B. (2019). Physicochemical, scavenging and anti-proliferative analyses of polysaccharides extracted from psyllium (Plantago ovata Forsk) husk and seeds. International Journal of Biological Macromolecules, 133, 190–201.

    Google Scholar 

  • Ramashia, S. E., Gwata, E. T., Meddows-Taylor, S., Anyasi, T. A., & Jideani, A. I. O. (2018). Some physical and functional properties of finger millet (Eleusine coracana) obtained in sub-Saharan Africa. Food Research International, 104, 110–118.

    Google Scholar 

  • Ropelewska, E., Zapotoczny, P., Budzyński, W. S., & Jankowski, K. J. (2017). Discriminating power of selected physical properties of seeds of various rapeseed (Brassica napus L.) cultivars. Journal of Cereal Science, 73, 62–67.

    Google Scholar 

  • Rostami, H., & Gharibzahedi, S. M. T. (2017). Mathematical modeling of mucilage extraction kinetic from the waste hydrolysates of fruiting bodies of Zizyphus jujuba mill. Journal of Food Processing and Preservation, 41(4), e13064.

    Google Scholar 

  • Sadeghian, F., Rahmanian, S., & Jahromi, H. K. (2018). Impact of aqueous extract of Plantago ovata fork (psyllium) fruit on the improvement of non-alcoholic fatty liver disease among male rats. Asian Journal of Pharmaceutics, 12(1), S173–S178.

    Google Scholar 

  • Singh, K. K., & Goswami, T. K. (1998). Mechanical properties of cumin seed (Cuminum cyminum Linn.) under compressive loading. Journal of Food Engineering, 36(3), 311–321.

    Google Scholar 

  • Singh, R. K., Vishwakarma, R. K., Vishal, M. K., Goswami, D., & Mehta, R. S. (2016). Moisture dependent physical properties of dill. Journal of Agricultural Engineering, 53(1), 33–40.

    Google Scholar 

  • Soltanian, N., & Janghorbani, M. (2019). Effect of flaxseed or psyllium vs. placebo on management of constipation, weight, glycemia, and lipids: A randomized trial in constipated patients with type 2 diabetes. Clinical Nutrition ESPEN, 29, 41–48.

    Google Scholar 

  • Subramanian, S., & Viswanathan, R. (2003). Thermal properties of minor millet grains and flours. Biosystems Engineering, 84(3), 289–296.

    Google Scholar 

  • Suleiman, R. A., Xie, K., & Rosentrater, K. A. (2015). Physical and thermal properties of chia, kaniwa, triticale and farro as a function of moisture content. In 2015 ASABE Annual International Meeting (p. 1). American Society of Agricultural and Biological Engineers.

  • Taheri-Garavand, A., Nassiri, A., & Gharibzahedi, S. M. T. (2012). Physical and mechanical properties of hemp seed. International Agrophysics, 26(2), 211–215.

    Google Scholar 

  • Tavakoli, M., Tavakoli, H., Rajabipour, A., Ahmadi, H., & Gharib-Zahedi, S. M. T. (2010). Moisture-dependent physical properties of barley grains. International Journal of Agricultural and Biological Engineering, 2(4), 84–91.

    Google Scholar 

  • Varnamkhasti, M. G., Mobli, H., Jafari, A., Keyhani, A. R., Soltanabadi, M. H., Rafiee, S., & Kheiralipour, K. (2008). Some physical properties of rough rice (Oryza sativa L.) grain. Journal of Cereal Science, 47(3), 496–501.

    Google Scholar 

  • Yu, D. U., Shrestha, B. L., & Baik, O. D. (2015). Thermal conductivity, specific heat, thermal diffusivity, and emissivity of stored canola seeds with their temperature and moisture content. Journal of Food Engineering, 165, 156–165.

    Google Scholar 

  • Yurtlu, Y. B., Yesiloglu, E., & Arslanoglu, F. (2010). Physical properties of bay laurel seeds. International Agrophysics, 24, 325–328.

    Google Scholar 

  • Zewdu, A. D. (2011). Moisture-dependent physical properties of ajwain (Trachyspermum ammi L.) seeds. Philippine Agricultural Scientist, 94(3), 278–284.

    Google Scholar 

  • Zhou, Y. Q., Xu, R. Y., & Wan, Y. P. (2019). The role of dietary factors in inflammatory bowel diseases: New perspectives. Journal of Digestive Diseases, 20(1), 11–17.

    Google Scholar 

  • Ziemichód, A., Wójcik, M., & Różyło, R. (2019). Seeds of Plantago psyllium and Plantago ovata: Mineral composition, grinding, and use for gluten-free bread as substitutes for hydrocolloids. Journal of Food Process Engineering, 42(1), e12931.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Hashemifesharaki.

Ethics declarations

Conflict of Interest

The author declares that he/she has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemifesharaki, R. Moisture-Dependent Engineering Characterization of Psyllium Seeds: Physical, Frictional, Aerodynamic, Mechanical, and Thermal Properties. J. Biosyst. Eng. 45, 374–384 (2020). https://doi.org/10.1007/s42853-020-00077-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42853-020-00077-4

Keywords

Navigation