Skip to main content
Log in

Review of Construction; Geometry; Heating, Ventilation, and Air-Conditioning; and Indoor Climate Requirements of Agricultural Greenhouses

  • Original Article
  • Published:
Journal of Biosystems Engineering Aims and scope Submit manuscript

A Correction to this article was published on 10 May 2019

This article has been updated

Abstract

Purpose

This article presents a comprehensive overview of the latest developments in greenhouse designs with the objective to determine the currently prevalent best design practices and lower their carbon and energy footprint.

Methods

This paper provides a review of the existing design trends in the construction; geometry; heating, ventilation, and air-conditioning (HVAC); and indoor climate requirements of agricultural greenhouses. This systematic review is expected to spearhead the effort in developing universal design guidelines for greenhouses.

Results

A systematic review of existing design practices and research on the construction, geometry, HVAC systems, and indoor climate requirements of agricultural greenhouses is presented.

Conclusions

This systematic review will provide a platform for universal design guidelines for greenhouses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 10 May 2019

    Due to a mistake the following articles.

Abbreviations

ACH:

air change per hour

ASHRAE:

American Society of Heating, Refrigerating and Air-Conditioning Engineers

CFD:

computational fluid dynamics

GHG:

greenhouse gas

HVAC:

heating ventilation and air-conditioning

LEED:

Leadership in Energy and Environmental Design (version 4)

PPM:

parts per million

PAR:

photosynthetic active radiation

RH:

relative humidity

VFD:

variable frequency drive

References

  • AGRIC (Alberta Agriculture and Forestry). (2018a). Components of the Greenhouse System for Environmental Control. http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/opp2892. Accessed 19 Dec 2018.

  • Agrios, G. N. (2005). Plant Pathology (5th ed.). New York: Elsevier Academic Press.

    Google Scholar 

  • Al-Helal, I. M., Waheeb, S. A., Ibrahim, A. A., Shady, M. R., & Abdel-Ghany, A. M. (2015). 2015. Modified thermal model to predict the natural ventilation of greenhouses. Energy and Buildings, 99, 1–8.

    Article  Google Scholar 

  • Amir, H. M., & Takashi, H. (1988). Greenhouse structure design optimization. Irrigation Engineering and Rural Planning., 14.

  • ASHRAE Handbook. (2017). Fundamentals. Akron: ASHRAE Publications.

    Google Scholar 

  • ASHRAE/ANSI/ IES Standard 90.1. (2016). Energy standard for buildings except low-rise residential buildings. New York City: American Society of Heating, Refrigerating and Air-Conditioning Engineers.

    Google Scholar 

  • Benis, K., Reinhart, C., & Ferrao, P. (2017). Development of a simulation-based decision support workflow for the implementation of building-integrated agriculture (BIA) in urban contexts. Journal of Cleaner Productions, 147(2017), 589–602.

    Article  Google Scholar 

  • Benni, S., Tassinari, P., Bonora, F., Barbaeresi, A., & Torreggiani, D. (2016). Efficacy of greenhouse natural ventilation: Environmental monitoring and CFD simulations of a case study. Energy and Buildings, 125(2016), 276–286.

    Article  Google Scholar 

  • Briassoulis, D., Waaijenberg, D., Gratraud, J., & von Eslner, B. (1997). Mechanical properties of covering material for greenhouses: Part 1, general overview. Journal of Agricultural Engineering Research, 67, 81–96.

    Article  Google Scholar 

  • Campen, J. B., & Bot, G. P. A. (2001). 2001. Design of a low-energy dehumidifying system for greenhouses. Journal of Agricultural Engineering Research, 78(1), 65–73.

    Article  Google Scholar 

  • Candy, S., Moore, G., & Freere, P. (2012). Design and modeling of a greenhouse for a remote region in Nepal. Periodica Engineering, 49(2012), 152–190.

    Google Scholar 

  • CEN. (1997). Greenhouses: Design and construction. Part 1: commercial production greenhouses. Brussels: CEN.

    Google Scholar 

  • DeJong, T., VanDeBraak, N. J., & Bot, G. P. A. (1993). A wet plate heat exchanger for conditioning closed greenhouses. Journal of Agricultural Engineering Research; September, 56(1), p25–p37 13p.

    Article  Google Scholar 

  • DIN. (1994). DIN 11532–2. Greenhouses: steel and aluminum construction.

  • EnergyPlus (2018). Available https://energyplus.net/. Accessed 15 Oct 2018.

  • Engel, R. D. (1984). Using simulation to optimize solar greenhouse design, ANSS. In: Proceedings of the 17th annual symposium on Simulation, pp. 119–139.

  • Geoola, F., Kashti, Y., & Peiper, U. M. (1998). 1998. A model greenhouse for testing the role of condensation, dust and dirt on the solar radiation transmissivity of greenhouse cladding materials. Journal of Agricultural Engineering Research, 71, 339–346.

    Article  Google Scholar 

  • Ghosal M. K. Tiwari,, G. N., Das, D. K., Pandey, K. P. (2005). Modeling and comparative thermal performance of ground air collector and earth air heat exchanger for heating of greenhouse. Energy and Buildings, 37(6):613–621.

  • Kacira, M., Sase, S., & Okushima, L. (2004). Optimization of vent configuration by evaluating greenhouse and plant canopy ventilation rates under wind-induced ventilation. Transactions of the ASAE, 47(6), 2059–2067.

    Article  Google Scholar 

  • Kittas, C., & Bartzanas, T. (2007). 2007. Greenhouse microclimate and dehumidification effectiveness under different ventilator configuration. Building and Environment, 42, 3774–3784.

    Article  Google Scholar 

  • Kittas, C., Karamanis, M., & Katsoulas, N. (2005). Air temperature in a forced ventilated greenhouse with rose crop. Energy and Buildings, 37(2005), 807–812.

    Article  Google Scholar 

  • Kittas, C., Katsoulas, N., Bartzanas, T., & Bakker, S. (2013). Greenhouse climate control and energy use, Good Agricultural Practices for greenhouse vegetable crops (p. 2013). Rome: Food and Agriculture Organization of The United Nations.

    Google Scholar 

  • Kolokotsa, D., Saridakis, G., Dalamagkidis, K., Dolianitis, S., & Kaliakatsos, I. (2010). Development of an intelligent indoor environment and energy management system for greenhouses. Energy Conservation and Management, 52(2010), 155–168.

    Article  Google Scholar 

  • Lamrani, M. A., Boulard, T., Roy, J. C., & Jaffrin, A. (2001). 2001. Air flows and temperature patterns induced in a confined greenhouse. J. agric. Engng Res., 78(1), 75–88.

    Article  Google Scholar 

  • National Greenhouse Manufactures Association (NGMA). (1981). Standards of quality and environmental control: Design loads in greenhouse structures, ventilation and cooling greenhouses, Greenhouse Heat Loss. 1981.

  • National Greenhouse Manufactures Association (NGMA). (2017). Available https://www.ngma.com/index.htm. Accessed 4 Dec 2018.

  • Sethi, V. P., & Sharma, S. K. (2007). Survey of cooling technologies for worldwide agricultural greenhouse applications. Solar Energy, 81(2007), 1447–1459.

    Article  Google Scholar 

  • Short, T. H., Bauerle, W. L. (1977). A double plastic heat conservation system for glass greenhouses, In: Proceedings of International Symposium on Controlled Environment Agriculture, Tucson, Arizona, April 1977.

  • Stiles, M. R. (2012). A Design Model of Transient Performance for a Green Greenhouse. Distributed Generation and Alternative Energy Journal, 27(2). https://doi.org/10.1080/21563306.2012.10505412.

  • Sonneveld P., Fempkes F., Bot G. P. A. (2005). Greenhouse with an integrated NIR filter and a solar cooling system, Acta horticulturae, November 2005.

  • Swinkels, G. L. A. M., Sonneveld, P. J., & Bot, G. P. A. (2001). 2001. Improvement of greenhouse insulation with restricted transmission loss through zigzag covering material, J. agric. Engng Res., 79(1), 91–97.

    Article  Google Scholar 

  • Tiwari, G. (2003). Greenhouse Technology for Controlled Environment. Oxford: Alpha Science Int’l Ltd.

    Google Scholar 

  • van dan Bulck, N., Coomans, M., Wittemans, L., Hanssens, J., & Steppe, K. (2013). Monitoring and energetic performances analysis of an innovative ventilation concept in a Belgian greenhouse. Energy and Buildings, 57(2013), 51–57.

    Article  Google Scholar 

  • Vanthoor, B. H. E., Stanghellini, C., van Henten, E. J., & de Visser, P. H. B. (2011a). A methodology of model-based greenhouse design: Part 1, A greenhouse climate model for a broad range of designs and climates. Biosystems Engineering, 110(2011), 363–377.

    Article  Google Scholar 

  • Vanthoor, B. H. E., Stanghellini, C., van Henten, E. J., & de Visser, P. H. B. (2011b). A methodology of model-based greenhouse design: Part 2, Description and validation of a tomato yield model. Biosystems Engineering, 110(2011), 378–395.

    Article  Google Scholar 

  • Vanthoor, B. H. E., Stanghellini, C., van Henten, E. J., & de Visser, P. H. B. (2011c). A methodology of model-based greenhouse design: Part 3, Sensitivity analysis of a combined greenhouse climate-crop yield model. Biosystems Engineering, 110(2011), 396–412.

    Article  Google Scholar 

  • Vanthoor, B. H. E., Gazquez Juan, C., Magan Juan, C., Ruijs Marc, N. A., Baeza, E., Cecilia, S., van Henten Eldert, J., & de Visser Pieter, H. B. (2012a). A methodology of model-based greenhouse design: Part 4, Economic evaluation of different greenhouse designs: A Spanish case. Biosystems Engineering, 111(2012), 336–349.

    Article  Google Scholar 

  • Vanthoor, B. H. E., Stinger Johannes, D., Cecilia, S., van Henten Eldert, J., de Visser Pieter, H. B., & Silke, H. (2012b). A methodology of model-based greenhouse design: Part 5, greenhouse design optimization for southern-Spanish and Dutch conditions. Biosystems Engineering, 111(2012), 350–368.

    Article  Google Scholar 

  • Vermeulen, S. J., Campbell, B. M., & Ingram, J. S. I. (2012). Climate change and food systems. Annual Review of Environment and Resources, 37, 195–222.

    Article  Google Scholar 

  • von Elsner, B., von Briassoulis, D., Waaijenberg, D., Mistriotis, A., von Zabeltitz, C., Gratraud, J., Russo, G., & Suay-Cortes, R. (2000a). Review of structural and functional characteristics of greenhouse in European Union countries: Part I, Design requirements. Journal of Agricultural Engineering Research, 75, 1–16.

    Article  Google Scholar 

  • von Elsner, B., von Briassoulis, D., Waaijenberg, D., Mistriotis, A., von Zabeltitz, C., Gratraud, J., Russo, G., & Suay-Cortes, R. (2000b). Review of structural and functional characteristics of greenhouse in European Union countries: Part II, Typical designs. Journal of Agricultural Engineering Research, 75, 111–126.

    Article  Google Scholar 

  • Waaijenberg D., Hemming S., Campen J. B. (2005). The solar greenhouse: A highly insulated greenhouse design with an inflated roof system with PVDF or ETFE membranes, Acta Hort. 691, ISHS 2005.

  • Willits, D. H. (2003). Cooling fan-ventilated greenhouses: A modelling study. Biosystems Engineering, 84(3), 315–329.

Download references

Funding

The NSERC Discovery Grant financially supported the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Muslim Syed.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syed, A.M., Hachem, C. Review of Construction; Geometry; Heating, Ventilation, and Air-Conditioning; and Indoor Climate Requirements of Agricultural Greenhouses. J. Biosyst. Eng. 44, 18–27 (2019). https://doi.org/10.1007/s42853-019-00005-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42853-019-00005-1

Keywords

Navigation