Skip to main content
Log in

Optimal Operation Strategy of Large-scale CHP in District Heating System

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

In the landscape of Korea, having numerous industrial complexes and densely populated residential areas and showing evident seasonal changes, district heating systems (DHS) with large-scale combined heat and power plants (L-CHP) are widely utilized. L-CHP is a combined system consisting of a backpressure turbine and an extraction-condensing turbine. It can transition the operation mode according to the heat and electric load situation, unlike small-scale CHP (S-CHP), which has a single operation mode. This paper defines the physical constraints and the outputs of heat and electricity for L-CHP’s operation modes and intermediate modes, which are the transition processes between operation modes. In addition, a novel optimal scheduling model of DHS based on mixed integer linear programming (MILP) is presented. The DHS comprises L-CHP and auxiliary facilities such as a peak load boiler and electric/thermal storage systems. To demonstrate the proposed optimization model, case studies are conducted with a sample DHS responding to the seasonal heat demands and Korean electricity market prices. The simulations are performed using IBM’s CPLEX Studio IDE 12.8.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Rosen MA, Minh NL, Ibrahim D (2005) Efficiency analysis of a cogeneration and district energy system. Appl Therm Eng 25(1):147–159

    Article  Google Scholar 

  2. Delmastro C (2023) Tracking district heating. International Energy Agency

  3. Combined heat and power. International Energy Agency (2008)

  4. Integrated energy business manual for (2022). Korea Energy Agency

  5. Wang H, Yin W, Abdollahi E, Lahdelma R, Jiao W (2015) Modelling and optimization of CHP based district heating system with renewable energy production and energy storage. Appl Energy 159:401–421

    Article  Google Scholar 

  6. Ren H, Gao W, Ruan Y (2008) Optimal sizing for residential CHP system. Appl Therm Eng 28(5–6):514–523

    Article  Google Scholar 

  7. Costa A, Fichera A (2014) A mixed-integer linear programming model for the evaluation of CHP system in the context of hospital structures. Appl Therm Eng 71(2):921–929

    Article  Google Scholar 

  8. Aghaei J, Alizadeh MI (2013) Multi-objective self-scheduling of CHP-based microgrids considering demand response programs and ESSs. Energy 55:1044–1054

    Article  Google Scholar 

  9. Alipour M, Mohammadi-Ivatloo B, Zare K (2014) Stochastic risk-constrained short-term scheduling of industrial cogeneration systems in the presence of demand response programs. Appl Energy 136:393–404

    Article  Google Scholar 

  10. Basu AK, Bhattacharya A, Chowdhury S, Chowdhury SP (2012) Planned scheduling for economic power sharing in a CHP-based microgrid. IEEE Trans Power Syst 27(1):30–38

    Article  Google Scholar 

  11. Cho H, Luck R, Eksioglu SD, Chamra LM (2009) Cost-optimized real-time operation of CHP systems. Energy Build 41(4):445–451

    Article  Google Scholar 

  12. Zidan A, Gabbar HA, Eldessouky A (2015) Optimal planning of combined heat and power systems within microgrids. Energy 93:235–244

    Article  Google Scholar 

  13. Aghaei J, Agelidis VG et al (2016) Optimal robust unit commitment of CHP plants in electricity markets using information gap decision theory. IEEE Trans Smart Grid 8(5):2296–2304

    Article  Google Scholar 

  14. Alipour M, Mohammadi-Ivatloo B, Zare K (2015) Stochastic scheduling of renewable and CHP-based microgrids. IEEE Trans Industr Inform 11(5):1049–1058

    Article  Google Scholar 

  15. Fang T, Lahdelma R (2016) Optimization of combined heat and power production with heat storage based on sliding time window method. Appl Energy 162:723–732

    Article  Google Scholar 

  16. Kim JS, Edgar TF (2014) Optimal scheduling of combined heat and power plants using mixed-integer non-linear programming. Energy 77:675–690

    Article  Google Scholar 

  17. Liu C, Shahidehpour M, Li Z, Fotuhi-Firuzabad M (2009) Component and mode models for the short-term scheduling of combined-cycle units. IEEE Trans Power Syst 24(2):976–990

    Article  Google Scholar 

  18. Lu B, Shahidehpour M (2005) Unit commitment with flexible generating units. IEEE Trans Power Syst 20(2):1022–1034

    Article  Google Scholar 

  19. Rolfsman B (2004) Combined heat-and-power plants and district heating in a deregulated electricity market. Appl Energy 78(1):37–52

    Article  Google Scholar 

  20. Thorin E, Brand H, Weber C (2005) Long-term optimization of cogeneration systems in a competitive market environment. Appl Energy 81(2):152–169

    Article  Google Scholar 

  21. Tina GM, Passarello G (2012) Short-term scheduling of industrial cogeneration systems for annual revenue maximisation. Energy 42(1):46–56

    Article  Google Scholar 

  22. Vögelin P, Koch B, Georges G, Boulouchos K (2017) Heuristic approach for the economic optimisation of combined heat and power (CHP) plants: operating strategy, heat storage and power. Energy 121:66–77

    Article  Google Scholar 

  23. Shen Z, Wu L, Sedgh SA, Radmehr F (2023) Optimal operation scheduling of a microgrid using a novel scenario-based robust approach. Engineering Optimization 1-22

  24. Komeili M, Nazarian P, Safari A, Moradlou M (2022) Robust optimal scheduling of CHP-based microgrids in presence of wind and photovoltaic generation units: an IGDT approach. Sustain Cities Soc 78:103566

    Article  Google Scholar 

  25. Park YG, Park JB (2019) Robust optimal scheduling with a grid-connected microgrid installed in a large-scale power consumer. J Electr Eng Technol 14:1881–1892

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Human Resources Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Planning(KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea (No. 20204010600220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Gi Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

A Objective Function

$$\begin{aligned} \max \left\{ \sum _{t \in \mathbb {T}} \left[ {\lambda _{t} P(t) + \psi _{t} Q(t) - C(t)} \right] \right\} \end{aligned}$$
(A.1)
$$\begin{aligned} P(t) = \sum _{m \in \mathbb {M}} P_{m}^{CHP}(t) + \sum _{n \in \mathbb {N}} p_{n}^{chp}(t) + P_{D}^{ESS}(t) - P_{C}^{ESS}(t) , \ \forall t \in \mathbb {T} \end{aligned}$$
(A.2)
$$\begin{aligned} Q(t) = \sum _{m \in \mathbb {M}} Q_{m}^{CHP}(t) + \sum _{n \in \mathbb {N}} q_{n}^{chp}(t) + Q_{D}^{ACC}{(t)} - Q_{C}^{ACC}{(t)} + Q^{PLB}{(t)} , \ \forall t \in \mathbb {T} \end{aligned}$$
(A.3)
$$\begin{aligned} C(t) = \sum _{m \in \mathbb {M}} C_{m}^{CHP}(t) + \sum _{n \in \mathbb {N}} c_{n}^{chp}(t) + SUC(t) + SUD(t) + C^{PLB}(t) , \ \forall t \in \mathbb {T} \end{aligned}$$
(A.4)
$$\begin{aligned} C_{m}^{CHP}(t)= & {} \rho _{t}^{CHP} \left\{ a_{m} P_{m}^{CHP}(t) + b_{m} Q_{m}^{CHP}(t) + c_{m} u_{m}^{CHP} (t) \right\} ,\nonumber \\{} & {} \times \forall m \in \mathbb {M} \ , \forall t \in \mathbb {T} \end{aligned}$$
(A.5)
$$\begin{aligned} c_{n}^{chp}(t) = \rho _{t}^{CHP} \left\{ a_{n} p_{n}^{chp}(t) + b_{n} q_{n}^{chp}(t) + c_{n} v_{n}^{chp} (t) \right\} , \ \forall n \in \mathbb {N} \ , \forall t \in \mathbb {T} \end{aligned}$$
(A.6)
$$\begin{aligned} SUC(t) = SUC \cdot y(t) , \ \forall t \in \mathbb {T} \end{aligned}$$
(A.7)
$$\begin{aligned} SDC(t) = SDC \cdot z(t) , \ \forall t \in \mathbb {T} \end{aligned}$$
(A.8)
$$\begin{aligned} C^{PLB}(t) = \rho _{t}^{PLB} \cdot {Q^{PLB}(t)}/{\eta ^{PLB}} , \ \forall t \in \mathbb {T} \end{aligned}$$
(A.9)

B Constraints

1.1 B.1 Constraints on Heat Balance

$$\begin{aligned} \sum _{m \in \mathbb {M}} Q_{m}^{CHP}(t) \!+\! \sum _{n \in \mathbb {N}} q_{n}^{chp}(t) \!+\! Q^{PLB}(t) \!=\! HL_{t} - Q_{D}^{ACC}(t) \!+\! Q_{C}^{ACC}(t)\ , \quad \forall t \in \mathbb {T} \end{aligned}$$
(B.1)

1.2 B.2 Constraints on the Status of L-CHP’s Operation Mode

$$\begin{aligned} \sum _{m \in \mathbb {M}} u_{m}^{CHP}(t) + \sum _{n \in \mathbb {N}} v_{n}^{chp}(t) = 1 \ , \quad \forall t \in \mathbb {T} \end{aligned}$$
(B.2)

1.3 B.3 Constraints on the Direction of L-CHP’s Mode Transition

$$\begin{aligned} u_{m}^{CHP}(t)+ & {} \sum _{h \in \mathbb {H}} u_{h}^{CHP}(t) + \sum _{i \in \mathbb {I}} v_{i}^{chp}(t) \le U \cdot \left\{ 1 - u_{m}^{CHP} (t-1) \right\} \nonumber \\+ & {} 1 \ , \ \forall m \in \mathbb {M} , \forall t \in \mathbb {T} \end{aligned}$$
(B.3)
$$\begin{aligned} u_{m}^{CHP}(t)+ & {} \sum _{h \in \mathbb {H}} u_{h}^{CHP}(t) + \sum _{i \in \mathbb {I}} v_{i}^{chp}(t) \ge L \cdot \left\{ 1 - u_{m}^{CHP} (t-1) \right\} \nonumber \\+ & {} 1 \ , \ \forall m \in \mathbb {M} , \forall t \in \mathbb {T} \end{aligned}$$
(B.4)
$$\begin{aligned} v_{n}^{chp}(t)+ & {} \sum _{j \in \mathbb {J}} u_{j}^{CHP}(t) \le U \cdot \left\{ 1 - v_{n}^{chp} (t-1) \right\} \nonumber \\+ & {} 1 \ , \ \forall n \in \mathbb {N} , \forall t \in \mathbb {T} \end{aligned}$$
(B.5)
$$\begin{aligned} v_{n}^{chp}(t) + \sum _{j \in \mathbb {J}} u_{j}^{CHP}(t) \ge L \cdot \left\{ 1 - v_{n}^{chp} (t-1) \right\} + 1 \ , \ \forall n \in \mathbb {N} , \forall t \in \mathbb {T} \end{aligned}$$
(B.6)
$$\begin{aligned} \sum _{k \in \mathbb {K}} v_{k}^{chp}(t) \le U \cdot \left\{ 1 + u_{m}^{CHP} (t) - u_{m}^{CHP} (t-1) \right\} \ , \ \forall m \in \mathbb {M} , \forall t \in \mathbb {T} \end{aligned}$$
(B.7)
$$\begin{aligned} \sum _{k \in \mathbb {K}} v_{k}^{chp}(t) \ge L \cdot \left\{ 1 + u_{m}^{CHP} (t) - u_{m}^{CHP} (t-1) \right\} \ , \ \forall m \in \mathbb {M} , \forall t \in \mathbb {T} \end{aligned}$$
(B.8)
$$\begin{aligned} \sum _{i \in \mathbb {I}} v_{i}^{chp}(t) - 1 \le U \cdot \left\{ 1 + u_{m}^{CHP} (t) - u_{m}^{CHP} (t-1) \right\} \ , \ \forall m \in \mathbb {M} , \forall t \in \mathbb {T} \end{aligned}$$
(B.9)
$$\begin{aligned} \sum _{i \in \mathbb {I}} v_{i}^{chp}(t) - 1 \ge L \cdot \left\{ 1 + u_{m}^{CHP} (t) - u_{m}^{CHP} (t-1) \right\} \ , \ \forall m \in \mathbb {M} , \forall t \in \mathbb {T} \end{aligned}$$
(B.10)
$$\begin{aligned} \sum _{j \!\in \! \mathbb {J}} u_{j}^{CHP}(t \!+\! MIT_{n} \!-\! 1) \!\le \! U \cdot \left\{ 1 \!-\! v_{n}^{chp} ( t \!-\! MIT_{n} \!-\!1 ) \right\} \!+\! 1 \ , \ \forall n \in \mathbb {N} \ , \forall t \in \mathbb {T} \end{aligned}$$
(B.11)
$$\begin{aligned} \sum _{j \in \mathbb {J}} u_{j}^{CHP}(t \!+\! MIT_{n}\! -\! 1) \ge L \cdot \left\{ 1 \!- \!v_{n}^{chp} ( t \!-\! MIT_{n} \!-\!1 ) \right\} \!+\! 1 \ , \ \forall n \!\in \! \mathbb {N} \ , \forall t \!\in \! \mathbb {T} \end{aligned}$$
(B.12)

1.4 B.4 Constraints on the Production Limits of L-CHP and PLB

$$\begin{aligned} P_{m}^{min} \cdot u_{m}^{CHP}(t) \le P_{m}^{CHP}(t) \le P_{m}^{max} \cdot u_{m}^{CHP}(t) \ , \quad \forall m \in \mathbb {M} \ , \forall t \in \mathbb {T} \end{aligned}$$
(B.13)
$$\begin{aligned} p_{n}^{min} \cdot v_{n}^{chp}(t) \le p_{n}^{chp}(t) \le p_{n}^{max} \cdot v_{n}^{chp}(t) \ , \quad \forall n \in \mathbb {N} \ , \forall t \in \mathbb {T} \end{aligned}$$
(B.14)
$$\begin{aligned} Q_{m}^{min} \cdot u_{m}^{CHP}(t) \le Q_{m}^{CHP}(t) \le Q_{m}^{max} \cdot u_{m}^{CHP}(t) \ , \quad \forall m \in \mathbb {M} \ , \forall t \in \mathbb {T} \end{aligned}$$
(B.15)
$$\begin{aligned} q_{n}^{min} \cdot v_{n}^{chp}(t) \le q_{n}^{chp}(t) \le q_{n}^{max} \cdot v_{n}^{chp}(t) \ , \quad \forall n \in \mathbb {N} \ , \forall t \in \mathbb {T} \end{aligned}$$
(B.16)
$$\begin{aligned} Q_{1}^{CHP} = \alpha _{1}^{(1)} P_{1}^{CHP}(t) + \beta _{1}^{(1)} u_{1}^{CHP}(t) \ , \quad m = 1 \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.17)
$$\begin{aligned} Q_{2}^{CHP} \le \alpha _{2}^{(1)} P_{2}^{CHP}(t) + \beta _{2}^{(1)} u_{2}^{CHP}(t) \ , \quad m = 2 \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.18)
$$\begin{aligned} Q_{2}^{CHP} \le \alpha _{2}^{(2)} P_{2}^{CHP}(t) + \beta _{2}^{(2)} u_{2}^{CHP}(t) \ , \quad m = 2 \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.19)
$$\begin{aligned} Q_{2}^{CHP} \ge \alpha _{2}^{(3)} P_{2}^{CHP}(t) + \beta _{2}^{(3)} u_{2}^{CHP}(t) \ , \quad m = 2 \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.20)
$$\begin{aligned} q_{n}^{chp} \le \mu _{n}^{(1)} p_{n}^{chp}(t) + \omega _{n}^{(1)} v_{n}^{chp}(t) \ , \quad \forall n \in \mathbb {N} \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.21)
$$\begin{aligned} q_{n}^{chp} \le \mu _{n}^{(2)}p_{n}^{chp}(t) + \omega _{n}^{(2)} v_{n}^{chp}(t) \ , \quad \forall n \in \mathbb {N} \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.22)
$$\begin{aligned} q_{n}^{chp} \ge \mu _{n}^{(3)}p_{n}^{chp}(t) + \omega _{n}^{(3)} v_{n}^{chp}(t) \ , \quad \forall n \in \mathbb {N} \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.23)
$$\begin{aligned} q_{n}^{chp} \ge \mu _{n}^{(4)}p_{n}^{chp}(t) + \omega _{n}^{(4)} v_{n}^{chp}(t) \ , \quad \forall n \in \mathbb {N} \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.24)
$$\begin{aligned} 0 \le Q^{PLB}(t) \le Q_{PLB}^{max} \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.25)

1.5 B.5 Constraints on ACC

$$\begin{aligned} 0 \le u_{C}^{ACC}(t) + u_{D}^{ACC}(t) \le 1 \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.26)
$$\begin{aligned} 0 \le Q_{C}^{ACC}(t) \le Q_{C}^{max} \cdot u_{C}^{ACC}(t) \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.27)
$$\begin{aligned} 0 \le Q_{D}^{ACC}(t) \le Q_{D}^{max} \cdot u_{D}^{ACC}(t) \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.28)
$$\begin{aligned} 0 \le ACC(t) \le ACC^{max} \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.29)
$$\begin{aligned} ACC(t) = Q_{C}^{ACC}(t) - Q_{D}^{ACC}(t) + ACC(t-1) \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.30)
$$\begin{aligned} \sum _{l = t}^{t+{MUT_{C}^{ACC}}-1} u_{C}^{ACC}(l) \ge MUT_{C}^{ACC} \cdot \left[ u_{C}^{ACC}(t) - u_{C}^{ACC}(t-1)\right] \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.31)
$$\begin{aligned} \sum _{l = t}^{t+{MUT_{D}^{ACC}}-1} u_{D}^{ACC}(l) \ge MUT_{D}^{ACC} \cdot \left[ u_{D}^{ACC}(t) - u_{D}^{ACC}(t-1)\right] \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.32)

1.6 B.6 Constraints on ESS

$$\begin{aligned} 0 \le u_{C}^{ESS}(t) + u_{D}^{ESS}(t) \le 1 \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.33)
$$\begin{aligned} 0 \le P_{C}^{ESS}(t) \le P_{C}^{max} \cdot u_{C}^{ESS}(t) \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.34)
$$\begin{aligned} 0 \le P_{D}^{ESS}(t) \le P_{D}^{max} \cdot u_{D}^{ESS}(t) \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.35)
$$\begin{aligned} 0 \le ESS(t) \le ESS^{max} \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.36)
$$\begin{aligned} ESS(t) = P_{C}^{ESS}(t) - P_{D}^{ESS}(t) + ESS(t-1) \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.37)

1.7 B.7 The other Technical Constraints of L-CHP

$$\begin{aligned} z(t) - y(t) = u_{0}^{CHP}(t) + u_{0}^{CHP}(t-1) \le 1 \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.38)
$$\begin{aligned} y(t) + z(t) \le 1 \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.39)
$$\begin{aligned} \left[ \sum _{m \in \mathbb {M}} P_{m}^{CHP}(t) + \sum _{n \in \mathbb {N}} p_{n}^{chp}(t) \right] - \left[ \sum _{m \in \mathbb {M}} P_{m}^{CHP}(t-1) + \sum _{n \in \mathbb {N}} p_{n}^{chp}(t-1) \right] \\ \\ \le \left[ y(t) + z(t) \right] \cdot P_{m}^{max} + \left[ 1 - u_{0}^{CHP}(t-1) + u_{0}^{CHP}(t) \right] \cdot RU \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.40)
$$\begin{aligned} \left[ \sum _{m \in \mathbb {M}} P_{m}^{CHP}(t-1) + \sum _{n \in \mathbb {N}} p_{n}^{chp}(t-1) \right] - \left[ \sum _{m \in \mathbb {M}} P_{m}^{CHP}(t) + \sum _{n \in \mathbb {N}} p_{n}^{chp}(t) \right] \\ \\ \le \left[ y(t) + z(t) \right] \cdot P_{m}^{max} + \left[ 1 - u_{0}^{CHP}(t-1) + u_{0}^{CHP}(t) \right] \cdot RD \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.41)
$$\begin{aligned} \sum _{s = t-MUT+1}^{t} y(s) \le \left\{ \sum _{m \in \mathbb {M}} u_{m}^{CHP} (t) + \sum _{n \in \mathbb {N}} v_{n}^{chp} (t) \right\} - u_{0}^{CHP} (t) \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.42)
$$\begin{aligned} \sum _{s = t-MDT+1}^{t} z(s) \le 1- \left\{ \sum _{m \in \mathbb {M}} u_{m}^{CHP} (t) + \sum _{n \in \mathbb {N}} v_{n}^{chp} (t) \right\} + u_{0}^{CHP} (t) \ , \ \forall t \in \mathbb {T} \end{aligned}$$
(B.43)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, HY., Lee, DH., Roh, J.H. et al. Optimal Operation Strategy of Large-scale CHP in District Heating System. J. Electr. Eng. Technol. (2024). https://doi.org/10.1007/s42835-024-01909-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42835-024-01909-5

Keywords

Navigation