Skip to main content
Log in

A PV Power Forecasting Based on Mechanism Model-Driven and Stacking Model Fusion

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract    

Accurate short-term forecasting of photovoltaic power generation is crucial for power dispatching, capacity analysis, and unit commitment. Existing data-driven prediction algorithms have a certain impact on calculation speed and prediction accuracy, but they fail to consider the internal mechanism of photovoltaic power generation and have the risk of generalization. First, the fuzzy C-means clustering (FCM) algorithm method was used for preprocessing of the PV sample set. The sample points with variability were categorized into different sample sets with less variability. Second, the photovoltaic mechanism model is added to the first layer learner of the Stacking framework to form a one-layer learner of the Long Short-Term Memory (LSTM) neural network, Light Gradient Boosting model (LGBM), and mechanism-driven model. The mechanistic model limits PV generation to a reasonable range as a prediction constraint for the data-driven model. The proposed model can seize the useful inherent information from the mechanism model and utilize the ability of data analysis to extract the inexplicit linear relationship. Finally, the PV power and weather observation data collected from photovoltaic power stations located in a certain place in Germany are used to verify the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Cheng L, Zang H, Wei Z, Ding T, Xu R, Sun G (2021) Short-term solar power prediction learning directly from satellite images with regions of interest. IEEE Trans Sustain Energy 13(1):629–639

    Article  Google Scholar 

  2. Shahbaz M, Raghutla C, Chittedi KR, Jiao Z, Vo XV (2020) The effect of renewable energy consumption on economic growth: Evidence from the renewable energy country attractive index. Energy 207:118162

    Article  Google Scholar 

  3. Chang GW, Lu H-J (2018) Integrating gray data preprocessor and deep belief network for day-ahead pv power output forecast. IEEE Trans Sustain Energy 11(1):185–194

    Article  Google Scholar 

  4. Wen H, Du Y, Chen X, Lim E, Wen H, Jiang L, Xiang W (2020) Deep learning based multistep solar forecasting for pv ramp-rate control using sky images. IEEE Trans Industr Inf 17(2):1397–1406

    Article  Google Scholar 

  5. Marion B (2008) Comparison of predictive models for photovoltaic module performance. 2008 33rd IEEE Photovoltaic Specialists Conference. IEEE, pp 1–6

    Google Scholar 

  6. Li H, Ren Z, Xu Y, Li W, Hu B (2021) A multi-data driven hybrid learning method for weekly photovoltaic power scenario forecast. IEEE Trans Sustain Energy 13(1):91–100

    Article  Google Scholar 

  7. Liu W, Xu Y (2020) Randomised learning-based hybrid ensemble model for probabilistic forecasting of pv power generation. IET Gener Transm Distrib 14(24):5909–5917

    Article  Google Scholar 

  8. Qu Y, Xu J, Sun Y, Liu D (2021) A temporal distributed hybrid deep learning model for day-ahead distributed pv power forecasting. Appl Energy 304:117704

    Article  Google Scholar 

  9. Yuan X, Qi S, Wang Y, Wang K, Yang C, Ye L (2021) “Quality variable prediction for nonlinear dynamic industrial processes based on temporal convolutional networks. IEEE Sens J 21(18):20493–20503

    Article  Google Scholar 

  10. Jiajun H, Chuanjin Y, Yongle L, Huoyue X (2020) Ultra-short term wind prediction with wavelet transform, deep belief network and ensemble learning. Energy Convers Manage 205:112418

    Article  Google Scholar 

  11. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY (2022) Lightgbm: A highly efficient gradient boosting decision tree. IEEE Trans Smart Grid 13:3173964

    Google Scholar 

  12. Lin G-Q, Li L-L, Tseng M-L, Liu H-M, Yuan D-D, Tan RR (2020) An improved moth-flame optimization algorithm for support vector machine prediction of photovoltaic power generation. J Clean Prod 253:119966

    Article  Google Scholar 

  13. Liu W, Ren C, Xu Y (2020) Pv generation forecasting with missing input data: A super-resolution perception approach. IEEE Trans Sustain Energy 12(2):1493–1496

    Article  Google Scholar 

  14. Yixiu G, Yong L, Xuebo Q, Zhenyu Z, Wangfeng Z, Yujie M, Jinjie L, Yicheng Z, Yosuke N (2022) BiLstm Multi-task Learning-Based Combined Load Forecasting Considering the Loads Coupling Relationship for Multienergy System. IEEE Trans Smart Grid 13:3173964

    Google Scholar 

  15. Kang JWHZXLQXYWC (2019) Exploring key weather factors from analytical modeling toward improved solar power forecasting. IEEE Trans Smart Grid 10(2):1417–1427

    Article  Google Scholar 

  16. Han Y, Wang N, Ma M, Zhou H, Dai S, Zhu H (2019) A pv power interval forecasting based on seasonal model and nonparametric estimation algorithm. Sol Energy 184:515–526

    Article  Google Scholar 

  17. Veldhuis AJ, Nobre AM, Peters IM, Reindl T, Ruether R, Reinders AH (2015) An empirical model for rack-mounted pv module temperatures for southeast asian locations evaluated for minute time scales. IEEE J Photovoltaics 5(3):774–782

    Article  Google Scholar 

  18. Khan W, Walker S, Zeiler W (2022) Improved solar photovoltaic energy generation forecast using deep learningbased ensemble stacking approach. Energy 240:122812

    Article  Google Scholar 

  19. Zhang Q, Wu J, Ma Y, Li G, Ma J, Wang C (2022) Short-term load forecasting method with variational mode decomposition and stacking model fusion. Sust Energy Grids Netw 30:100622

    Article  Google Scholar 

  20. Chai S, Xu Z, Jia Y, Wong WK (2020) A robust spatiotemporal forecasting framework for photovoltaic generation. IEEE Trans Smart Grid 11(6):5370–5382

    Article  Google Scholar 

  21. Kim KA, Krein PT, Seo GS, Cho BH (2013) Photovoltaic ac parameter characterization for dynamic partial shading and hot spot detection. Twenty-eighth annual IEEE applied power electronics conference and exposition (APEC). IEEE, pp 109–115

  22. Barbieri F, Rajakaruna S, Ghosh A (2017) Very short-term photovoltaic power forecasting with cloud modeling: A review. Renew Sustain Energy Rev 75:242–263

    Article  Google Scholar 

  23. Zhang R, Ma H, Hua W, Saha TK, Zhou X (2019) Data-driven photovoltaic generation forecasting based on a bayesian network with spatial–temporal correlation analysis. IEEE Trans Industr Inf 16(3):1635–1644

    Article  Google Scholar 

  24. Lu X, Zhou Y, Wang Z, Yi Y, Feng L, Wang F (2019) Knowledge embedded semi-supervised deep learning for detecting non-technical losses in the smart grid. Energies 12(18):3452

    Article  Google Scholar 

  25. Xiao F, Ai Q (2018) Data-driven multi-hidden Markov model-based power quality disturbance prediction that incorporates weather conditions. IEEE Trans Power Syst 34(1):402–412

    Article  Google Scholar 

  26. Tan Y, Chen Y, Li Y, Cao Y (2020) Linearizing power flow model: A hybrid physical model-driven and datadriven approach. IEEE Trans Power Syst 35(3):2475–2478

    Article  Google Scholar 

  27. Bloch A, Casale-Brunet S, Mattavelli M (2021) Methodologies for synthesizing and analyzing dynamic dataflow programs in heterogeneous systems for edge computing. IEEE Open J Circ Syst 2:769–781

    Article  Google Scholar 

  28. Engerer N, Mills F (2015) Validating nine clear sky radiation models in australia. Sol Energy 120:9–24

    Article  Google Scholar 

  29. Gueymard CA (2008) Rest2: High-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation–validation with a benchmark dataset. Sol Energy 82(3):272–285

    Article  Google Scholar 

  30. Faiman D (2008) Assessing the outdoor operating temperature of photovoltaic modules. Prog Photovoltaics Res Appl 16(4):307–315

    Article  Google Scholar 

  31. Zheng F, Xia Y, Su H, Wang W (2021) Research on key technologies of power system visualization platform. 2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). IEEE, pp 235–238

    Chapter  Google Scholar 

  32. Kumar DS, Yagli GM, Kashyap M, Srinivasan D (2020) Solar irradiance resource and forecasting: a comprehensive review. IET Renew Power Gener 14(10):1641–1656

    Article  Google Scholar 

  33. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res: Atmos 106(D7):7183–7192

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the State Grid Company Technology Project(52120522000R). This work is supported by 2022 Collaborative Innovation Projects between Universities and Hefei Comprehensive National Science Center(GXXT-2022-023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Ding, J., Zhang, Q. et al. A PV Power Forecasting Based on Mechanism Model-Driven and Stacking Model Fusion. J. Electr. Eng. Technol. (2024). https://doi.org/10.1007/s42835-024-01906-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42835-024-01906-8

Keywords

Navigation