Skip to main content
Log in

Principle Issues and Future Prospect on Sliding Arc Ablation of Metal Rail

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

Arc ablation occurs when the armature passes over the surface of metal rail. Ablation not only seriously affects the service life, but also may cause the failure to launch. In this paper, the research status of sliding arc ablation technology is summarized from the mechanism of sliding arc ablation, the characterization method of sliding arc ablation degree, and the enhanced design of materials or structures. Three key issues that need to be further solved are listed: the influence mechanism of sliding arc ablation on microstructure and properties of metal materials, the service properties evaluation and quantitative characterization methods of metal material, as well as the modified and enhanced design of materials or structures. In response to those problems, efforts are needed to improve the awareness of sliding arc ablation with the theoretical basis and characterization methods, as well as guide the improvement and strengthening of rail design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Ma WM, Lu JY, Liu YQ (2019) Research progress of electromagnetic launch technology. IEEE Trans Plasma Sci 47(5):2197–2205

    CAS  ADS  Google Scholar 

  2. Zhang QX, Li J, Li SZ, Liu PZ, Jin LW, Liu GM (2019) Causes of damage at electromagnetic railgun’s initial position and corresponding improvement measures. IEEE Trans Plasma Sci 47(8):4184–4188

    CAS  ADS  Google Scholar 

  3. Noel AP, Challita A, Bauer DP (2001) A novel railgun launch package concept. IEEE Trans Magn 37(1):97–100

    ADS  Google Scholar 

  4. Lambert KM, Zaman AJ, Curran FM (1995) Experimental demonstration of the effects of an electric thruster plasma plume on microwave propagation. In: Proceedings of antennas & propagation society international symposium. IEEE

  5. Fair HD (2001) The science and technology of electric launch. IEEE Trans Magn 37(1):25–32

    ADS  Google Scholar 

  6. Sanogo S, Messine F, Henaux C, Vilamot R (2014) Topology optimization for magnetic circuits dedicated to electric propulsion. IEEE Trans Magn 50(12):1–13

    Google Scholar 

  7. Meger RA, Cairns RL, Douglass SR, Huhman B, Neri JM, Carney CJ, Jones HN, Cooper K, Feng J, Brintlinger TH, Sprague JA, Michopoulos JG, Young MM, DeGiorgi V, Leung A, Baucom JN, Wimmer S (2013) EM gun bore life experiments at naval research laboratory. IEEE Trans Plasma Sci 41(5):1533–1537

    ADS  Google Scholar 

  8. Parks PB (1990) Current melt-wave model for transitioning solid armature. J Appl Phys 67(7):3511–3516

    ADS  Google Scholar 

  9. Ma WM, Lu JY (2017) Thinking and study of electromagnetic launch technology. IEEE Trans Plasma Sci 45(7):1071–1077

    ADS  Google Scholar 

  10. Hsieh KT, Satapathy S, Hsieh MT (2009) Effects of pressure-dependent contact resistivity on contact interfacial conditions. IEEE Trans Magn 45(1):313–318

    ADS  Google Scholar 

  11. Jones HN, Neri JM, Boyer CN, Cooper KP, Meger RA (2007) Pulsed current static electrical contact experiment. IEEE Trans Magn 43(1):343–348

    ADS  Google Scholar 

  12. Sitzman AJ, Stefani F, Bourell DL (2015) The effect of geometric enhancement on the magnetic saw effect. IEEE Trans Plasma Sci 43(5):1503–1509

    ADS  Google Scholar 

  13. Bryant MD (2011) A bond graph model of an electromagnetic launcher-part 1: structure and details. IEEE Trans Plasma Sci 39(1):29–39

    ADS  Google Scholar 

  14. Persad C, Yeoh A, Prabhu G, White G, Eliezer Z (1997) On the nature of the armature-rail Interface: liquid metal effect. IEEE Trans Magn 33(1):140–145

    CAS  ADS  Google Scholar 

  15. Barber JP, Bauer DP, Jamison K, Parker JV, Stefani F, Zielinski A (2003) A survey of armature transition mechanisms. IEEE Trans Magn 39(1):47–51

    CAS  ADS  Google Scholar 

  16. Stefani F, Levinson S, Satapathy S, Parker J (2001) Electrodynamic transition in solid armature railguns. IEEE Trans Magn 37(1):101–105

    ADS  Google Scholar 

  17. Satapathy S, Vanicek H (2007) Down-slope contact transition in railguns. IEEE Trans Magn 43(1):402–407

    ADS  Google Scholar 

  18. Chen Y, Xu WD, Yuan WQ, Zhao Y, Yan P, Lan GF (2013) Sliding electrical contacts between aluminum armature and different material rails in railgun. High Volt Eng 39(4):937–942

    Google Scholar 

  19. Karthaus W, de Zeeuw WA, Kolkert WJ (1991) On the design and testing of solid armatures for rail accelerator applications. IEEE Trans Magn 27(1):308–313

    ADS  Google Scholar 

  20. McBride JW, Witter GJ, Chen ZK (2001) Volumetric erosion measurements of contacts tested in DC automotive relays. In: Proceedings of the forty-seventh IEEE Holm conference. IEEE

  21. Tepper J, Seeger M, Votteler T, Behrens V, Honig T (2006) Investigation on erosion of Cu/W contacts in high-voltage circuit breakers. IEEE Trans Compon Packag Technol 29(3):658–665

    CAS  Google Scholar 

  22. Mohammadhosein M, Niayesh K, Shayegani-Akmal AA, Mohseni H (2019) Online assessment of contact erosion in high voltage gas circuit breakers based on different physical quantities. IEEE Trans Power Deliv 32(2):580–587

    Google Scholar 

  23. Lan L, Chen G, Wen XS, Wu Y (2016) Erosion characteristics of SF6 circuit breaker contacts based on dynamic contact resistance measurement. High Volt Eng 42(6):1731–1738

    CAS  Google Scholar 

  24. Zhang Q, Yang XH, Liu BY, Zhang ZQ, Li XY, Liang SH (2016) Failure analysis of capacitor bank switch arc contact for UHV system. High Volt Appar 52(7):27–32

    CAS  Google Scholar 

  25. Biyik S, Aydin M (2016) Investigation of the effect of different current loads on the arc-erosion performance of electrical contacts. Acta Phys Pol A 129(4):656–660

    CAS  ADS  Google Scholar 

  26. Tang B, Xu YT, Lin QH, Li BM (2017) Synergy of melt-wave and electromagnetic force on the transition mechanism in electromagnetic launch. IEEE Trans Plasma Sci 45(7):1361–1367

    ADS  Google Scholar 

  27. Lin HR, Guo XH, Song KX, Feng J, Li SL, Zhang XF (2021) Synergistic strengthening mechanism of copper matrix composite reinforced with nano-Al2O3 particles and micro-SiC whiskers. Nanotechnol Rev 10(1):62–72

    CAS  Google Scholar 

  28. Lei B, Du CT, Lv QA, Zhang Q, Xing YC (2019) Experimental study on the influence of graphene coating on the performance of electromagnetic railgun. High Volt Eng 45(6):1929–1935

    Google Scholar 

  29. Itoh Y, Andoh H, Suyama S, Shindoh T (2001) Mechanical properties of tungsten/copper coatings produced by plasma spraying. Jpn Inst Met 65(10):929–934

    CAS  Google Scholar 

  30. Watt T, Motes DT (2011) The effects of surface coatings on the onset of rail gouging. IEEE Trans Plasma Sci 39(1):1686–2173

    Google Scholar 

  31. Barber JP, Dreizin YA (1995) Model of contact transitioning with “realistic” armature-rail interface. IEEE Trans Magn 31(1):96–100

    ADS  Google Scholar 

  32. Young F, Hughes W (1982) Rail and armature current distributions in electromagnetic launchers. IEEE Trans Magn 18(1):33–41

    ADS  Google Scholar 

  33. Barber JP, Challita A (1993) Velocity effects on metal armature contact transition. IEEE Trans Magn 29(1):733–738

    ADS  Google Scholar 

  34. Hsieh K (1995) A Lagrangian formulation for mechanically, thermally coupled electromagnetic diffusive processes with moving conductors. IEEE Trans Magn 31(1):604–609

    ADS  Google Scholar 

  35. Angeli M, Cardelli E, Azzerboni B (1997) Velocity skin-effect transition conditions on metal-on-metal sliding contacts in muzzle-fed railguns. IEEE Trans Magn 33(1):37–42

    CAS  ADS  Google Scholar 

  36. Hsieh K, Stefani F, Levinson SJ (2001) Numerical modeling of the velocity skin effects: an investigation of issues affecting accuracy. IEEE Trans Magn 37(1):416–420

    ADS  Google Scholar 

  37. Engel TG, Neri JM, Veracka MJ (2008) Characterization of the velocity skin effect in the surface layer of a railgun sliding contact. IEEE Trans Magn 44(7):1837–1844

    ADS  Google Scholar 

  38. Ruan JH, Chen LX, Xia SG, Wang ZJ, Li LL (2020) A review of current distribution in electromagnetic railguns. Trans China Electrotech Soc 35(21):4423–4431

    Google Scholar 

  39. Lv QA, Xiang HJ, Lei B, Zhang Q, Zhao KY, Li ZY, Xing YC (2015) Physical principle and relevant restraining methods about velocity skin effect. IEEE Trans Plasma Sci 43(5):1523–1530

    ADS  Google Scholar 

  40. Gong F, Weng CS (2014) 3-D numerical study of melt-wave erosion in solid armature railgun. High Volt Eng 40(7):2245–2250

    Google Scholar 

  41. Stefani F, Merrill R (2003) Experiments to measure melt-wave erosion in railgun armatures. IEEE Trans Magn 39(1):188–192

    CAS  ADS  Google Scholar 

  42. Stefani F, Merrill R, Watt T (2005) Numerical modeling of melt-wave erosion in two-dimensional block armatures. IEEE Trans Magn 41(1):437–441

    ADS  Google Scholar 

  43. Watt T, Stefani F (2005) The effect of current and speed on perimeter erosion in recovered armatures. IEEE Trans Magn 41(1):448–452

    ADS  Google Scholar 

  44. Ceylan D, Gudelek MU, Keysan O (2018) Armature shape optimization of an electromagnetic launcher including contact resistance. IEEE Trans Plasma Sci 46(10):3619–3627

    CAS  ADS  Google Scholar 

  45. Li CX, Xia SG, Chen LX, He JJ, Xiong Y, Zhang CD, Yao JM (2019) Simulations on current distribution in railgun under imperfect contact conditions. IEEE Trans Plasma Sci 47(5):2264–2268

    CAS  ADS  Google Scholar 

  46. Xu K (2017) Simulation study on influencing factors on current distribution in large caliber railgun at start-up stage. M.S. thesis, Dept. Electrical Engineering, Huazhong University of Science & Technology Wuhan, P.R. China

  47. Melton D, Watt T, Crawford M (2007) A study of magnetic sawing in an aluminum bar. IEEE Trans Magn 43(1):170–172

    CAS  ADS  Google Scholar 

  48. James TE (1995) Current wave and magnetic saw-effect phenomena in solid armatures. IEEE Trans Magn 31(1):622–627

    ADS  Google Scholar 

  49. Tang LL, He JJ, Chen LX, Xia SG, Feng D, Li J, Yan P (2015) Study of some influencing factors of armature current distribution at current ramp-up stage in Railgun. IEEE Trans Plasma Sci 43(5):1585–1591

    ADS  Google Scholar 

  50. Tang LL (2016) Experimental and theoretical study on liquid metal film characteristic of armature/rail contact interface in an electromagnetic launching. Ph.D. dissertation, Dept. High Voltage and Insulation Technology. Huazhong University of Science & Technology Wuhan, P.R.China

  51. Stefani F, Parker JV (1999) Experiments to measure wear in aluminum armatures. IEEE Trans Magn 35(1):100–106

    ADS  Google Scholar 

  52. Zhao H, Barber GC, Liu J (2001) Friction and wear in high speed sliding with and without electrical current. Wear 249(5):409–414

    CAS  Google Scholar 

  53. Grandin M, Wiklund U (2013) Friction, wear and tribofilm formation on electrical contact materials in reciprocating sliding against silver-graphite. Wear 302:1481–1494

    CAS  Google Scholar 

  54. Bansal DG, Streator JL (2009) Behavior of copper-aluminum tribological pair under high current densities. IEEE Trans Magn 45(1):244–249

    CAS  ADS  Google Scholar 

  55. Wang YA, Li JX, Yan Y, Qiao LJ (2012) Effect of electrical current on tribological behavior of copper-impregnated metallized carbon against a Cu–Cr–Zr alloy. Tribol Int 50:26–34

    Google Scholar 

  56. Shea JJ, DeVault B, Chien Y (1994) Blow-open forces on double-break contacts. IEEE Trans Compon Packag Manuf Technol Part A 17(1):32–38

    Google Scholar 

  57. Kharin S, Nouri H, Bizjak M (2009) Effect of vapour force at the blow-open process in double-break contacts. IEEE Trans Compon Packag Technol 32(1):108–190

    Google Scholar 

  58. Taylor ED, Lawall A, Slade PG (2016) Model for the welding of axial magnetic field vacuum interrupter contacts. International symposium on discharges & electrical insulation in vacuum. IEEE

  59. Barber JP, McNab IR (2003) Magnetic blow-off in armature transition. IEEE Trans Magn 39(1):42–46

    ADS  Google Scholar 

  60. Swingler J, Sumption A, McBride JW (2005) The evolution of contact erosion during an opening operation at 42V. In: Proceedings of the fifty-first IEEE Holm conference. IEEE

  61. Machado BI, Murr LE, Martinez E, Gaytan SM, Satapathy S (2011) Materials characterization of railgun erosion phenomena. Mater Sci Eng A 528:7552–7559

    CAS  Google Scholar 

  62. Gnegy-Davidson CG, Wetz DA, Wong D (2017) Impact of corroded copper rails on the performance of a miniature electromagnetic launcher. IEEE Trans Plasma Sci 45(7):1539–1544

    CAS  ADS  Google Scholar 

  63. Landry M, Turcotte O, Brikci F (2008) A complete strategy for conducting dynamic contact resistance measurements on HV circuit breakers. IEEE Trans Power Deliv 23(2):710–716

    Google Scholar 

  64. Landry M, Mercier A, Ouellet G, Rajotte C, Caron J, Roy M, Brikci F (2006) A new measurement method of the dynamic contact resistance of HVcircuit breakers. In: 2006 IEEE/PES Transmission & distribution conference and exposition. Latin America, pp 1–8

  65. Khoddam M, Sadeh J, Pourmohamadiyan P (2016) Electrical contact failure detection based on dynamic resistance principle component analysis and RBF neural network. In: 2016 International conference on condition monitoring and diagnosis (CMD), pp 380–383

  66. Jemaa NB, Morin L, Jeannot D, Hauner F (2001) Erosion and contact resistance performance of materials for sliding contacts under arcing. IEEE Trans Compon Packag Technol 24(3):353–357

    CAS  Google Scholar 

  67. Shea JJ (1999) Erosion and resistance characteristics of AgW and AgC contacts. IEEE Trans Compon Packag Technol 22(2):331–336

    CAS  Google Scholar 

  68. Wang ZC, Bao ZY, Cao H, Liu FC, Zhan ZY, Wang DZ (2018) Study on armature track contact characteristics of enhanced electromagnetic railgun. J Ordnance Ind 39(3):451–456

    Google Scholar 

  69. de Souza RT, de Araújo JF, de Costa EG, de Macêdo ECT (2014) A system for dynamic contact resistance with arduino platform on MV and HV circuit breaker. In: IEEE International instrumentation and measurement technology conference (I2MTC) proceedings, pp 369–373

  70. Yao JM, Chen LX, Xia SG, He JJ, Li CH (2019) Failure analysis of capacitor bank switch arcing contact for ultra-high voltage system. IEEE Trans Plasma Sci 47(5):2302–2308

    CAS  ADS  Google Scholar 

  71. Lindmayer M, Roth M (1979) Contact resistance and arc erosion of W/Ag and WC/Ag. IEEE Trans Compon Hybrids Manuf Technol 2(1):70–75

    Google Scholar 

  72. Kaliszuk K, Frydman K, Wojcik-Grzybek D, Bucholc W, Walczuk E, Borkowski P, Zasada D (2004) Arc erosion tests and study of surface of Ag-WC contacts after arc switching operations. In: Proceedings of the 50th IEEE Holm conference on electrical contacts and the 22nd international conference on electrical contacts electrical contacts, pp 75–82

  73. Mohammadhosein M, Niayesh K, Akmal AAS,Mohseni H (2018) Impact of surface morphology on arcing induced erosion of CuW contacts in gas circuit breakers. In: 2018 IEEE Holm conference on electrical contacts, pp 99–105

  74. Day M, Baker MC, Grant G (1993) HERA railgun facility at Texas Tech University. IEEE Trans Magn 29(1):787–791

    ADS  Google Scholar 

  75. Persad C, Marshall R, Alien R, Barton A, Wright D, Eliezer Z (1995) A comparison of the wear behaviors of six elemental wire conductors. IEEE Trans Magn 31(1):746–751

    CAS  ADS  Google Scholar 

  76. Siopis MJ, Neu RW (2013) Materials selection exercise for electromagnetic launcher rails. IEEE Trans Magn 49(8):4831–4838

    ADS  Google Scholar 

  77. Xie HB, Yang HY, Yu J, Gao MY, Shou JD, Fang YT, Liu JB, Wang HT (2021) Research progress on advanced rail materials for electromagnetic railgun technology. Def Technol 17(2):429–439

    Google Scholar 

  78. Wild B, Schuppler C, Alouahabi F, Schneider M, Hoffman R (2015) The influence of the rail material on the multishot performance of the rapid fire railgun. IEEE Trans Plasma Sci 43(6):2095–2099

    CAS  ADS  Google Scholar 

  79. Poltanov A, Jygailo N, Bykov M, Glinov A, Svobodov A, Belyakov A, Chernetskaya N (1997) Study of new materials for railgun launchers. IEEE Trans Magn 33(1):406–409

    CAS  ADS  Google Scholar 

  80. Hahne JJ, Herbst JH, Upshaw JL (1995) Fabrication and testing of a 30 mm and 90 mm laminated, high L’railgun designed and built at CEM-UT. IEEE Trans Magn 31(1):303–308

    ADS  Google Scholar 

  81. Gee RM, Persad C (2001) The response of different copper alloys as rail contacts at the breech of an electromagnetic launcher. IEEE Trans Magn 37(1):263–268

    CAS  ADS  Google Scholar 

  82. Liang SH, Li WZ, Jiang YH, Cao F, Dong GZ, Xiao P (2019) Microstructures and properties of hybrid copper matrix composites reinforced by TiB whiskers and TiB2 particles. J Alloy Compd 797:589–594

    CAS  Google Scholar 

  83. Singh MK, Gautam RK (2017) Synthesis of copper metal matrix hybrid composites using stir casting technique and its mechanical, optical and electrical behaviours. Trans Indian Inst Met 70(9):2415–2428

    CAS  Google Scholar 

  84. Xia GM, Yan SQ, Min XB, Wu HY, Zhou XJ (2001) Technical study and performance test of coating on synchr ring. Surf Technol 30(2):12–16

    Google Scholar 

  85. Liu GM, Yang ZX, Zhang YF, Yan T, Wei M (2016) Research on microstructure and properties of supersonic plasma sprayed Mo coating based on orthogonal experiment. Acta Armamentar II 37(8):1489–1496

    Google Scholar 

  86. Castro-Dettmer Z, Gee RM, Persad C (1999) Post-test characterization of a chromium-plated copper conductor. Mater Charact 43(4):251–258

    CAS  Google Scholar 

  87. Kang HK, Kang SB (2003) Tungsten/copper composite deposits produced by a cold spray. Scr Mater 49(12):1169–1174

    CAS  Google Scholar 

  88. Drobyshevski EM, Kolesnikova EN, Yuferev VS (1999) Calculating the liquid film effect on solid armature rail-gun launching. IEEE Trans Magn 35(1):53–58

    ADS  Google Scholar 

  89. Ghassemi M, Barsi YM (2005) Effect of liquid film (indium) in thermal and electromagnetic distribution of an electromagnetic launcher with new armature. IEEE Trans Magn 41(1):408–413

    ADS  Google Scholar 

  90. Hai-Tao Z, Xi-Ya X, Fei L, Bing-Wei L, Da-Bo L, Cheng-Min S (2021) Graphene enforced copper matrix composites fabricated by in-situ deposition technique. Acta Phys Sin 70(8):315–321

    Google Scholar 

  91. Tian HL, Wang CL, Guo MQ, Tang ZH, Gao JG, Cui YJ, Liang Y, Tong H, Wei SC, Xu BS (2020) Technology and properties of WC-12Co self-lubricating wear-resistant coating by explosive spraying. Rare Metal Mater Eng 49(3):1058–1067

    CAS  Google Scholar 

  92. Derelizade K, Venturi F, Wellman RG, Khlobystov A, Hussain T (2020) Structural changes of thermal sprayed graphene nano platelets film into amorphous carbon under sliding wear. Appl Surf Sci 528:1–9

    Google Scholar 

  93. Matějíček J, Zahálka F, Bensch J, Chi W, Sedláek J (2008) Copper-Tungsten composites sprayed by HVOF. J Therm Spray Technol 17(2):177–180

    ADS  Google Scholar 

  94. Harding J, Kaplan R, Pierson H, Tuffias R, Upshaw J (1986) Chemically vapor deposited materials for railguns. IEEE Trans Magn 22(6):1506–1509

    ADS  Google Scholar 

  95. Xing YC, Lv QA, Lei B, Xiang HJ, Zhu RG, Liu C (2015) Analysis of transient current distribution in copper strips of different structures for electromagnetic railgun. IEEE Trans Plasma Sci 43(5):1566–1571

    CAS  ADS  Google Scholar 

  96. Yang ZX, Liu GM, Yan T, Zhu XY (2015) Research progress of Mo and Mo-based coating prepared by thermal spraying. Surf Technol 44(5):20–30

    Google Scholar 

  97. Liu GM, Zhu S, Yan T, Du LF, Zhang XH, Liu M (2017) Orthogonal parameter optimization of Mo–W coating on 45CrNiMoVA steel surface. Hot Work Technol 46(10):1–5

    Google Scholar 

  98. Ji X (2009) Research on preparation process and properties of Ta–Mo heat resisting coating by magnetron sputtering. M.S. thesis, Department Material Processing Engineering, Shanghai University of Engineering Science, Shanghai, P.R. China

  99. Han XY, Liu XL, Wu ZZ, Duan BH, Wang DZ (2020) Research progress in refractory metal coatings. Mater Rep 34(13):13146–131547

    Google Scholar 

  100. Jiang XL, Wang YN, Lu X (2011) Anti-erosion analysis for artillery barrel coated by electrical explosion spraying technology. China Mech Eng 22(20):2494–2497

    Google Scholar 

  101. Engel TG, Rada NM (2017) Time- and frequency-domain characterization of railgun sliding contact noise. IEEE Trans Plasma Sci 45(7):1321–1326

    CAS  ADS  Google Scholar 

  102. Liu GM, Yang ZX, Yan T, Zhu XY (2015) Current status and prospect on rail failures of electromagnetic railgun. Mater Rep 29(7):63–70

    Google Scholar 

  103. Lehmann P, Peter H, Wey J (2001) First experimental results with the ISL 10 MJ DES railgun PEGASUS. IEEE Trans Magn 37(1):435–439

    ADS  Google Scholar 

  104. Satapathy S, Watt T, Persad C (2007) Effect of geometry change on armature behavior. IEEE Trans Magn 43(1):408–412

    ADS  Google Scholar 

  105. Zhang D, Ruan JJ, Liao JP, Liu KP (2012) Effect of geometry change on solid C shaped armature. In: 2012 16th International symposium. IEEE

  106. Herbst JD (1997) Installation and commissioning of the 9 MJ range gun system 90 mm high L’laminated railgun. IEEE Trans Magn 33(1):554–559

    CAS  ADS  Google Scholar 

  107. Zhang YJ, Ruan JJ, Zhang YD, Liao JP, Huang T (2011) Comparison of performances between stack and plane turn-augmented railgun. In: The 5th National symposium on electromagnetic emission technology. Beijing

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (92066108, 92166110, 92266109 & 92266112) and supported by the Fundamental Research Funds for the Central Universities (2023JG003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoxi Cong.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, H., Zhou, Y., Zhaori, G. et al. Principle Issues and Future Prospect on Sliding Arc Ablation of Metal Rail. J. Electr. Eng. Technol. 19, 1685–1700 (2024). https://doi.org/10.1007/s42835-023-01598-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42835-023-01598-6

Keywords

Navigation