Skip to main content

Advertisement

Log in

Structural Optimization of Compact Spherical Wind-Solar Hybrid Power System

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

Conventional wind-solar hybrid power systems (WS-HPSs) have certain structural drawbacks owing to their large size and the difficulty in adjusting the tilt angle of the solar panels. To address these limitations, this study proposes a compact spherical wind-solar hybrid power system (CSWS-HPS). Furthermore, to investigate the aerodynamic performance of the designed CSWS-HPS, a computational fluid dynamics model of the wind rotor was established using the Reynolds-averaged Navier–Stokes equations, renormalization group k-ε turbulence model, and sliding mesh. Subsequently, the flow field distribution of velocity and pressure under different numbers of blades, blade installation angles, and tip-speed ratios (TSRs) were analyzed by performing a three-dimensional simulation of the CSWS-HPS. The monitored values of the moment coefficients were used to calculate the power coefficient value of the wind turbine to obtain the optimum structural parameters, which in turn provided the optimal values for the CSWS-HPS model. The simulation results revealed that the CSWS-HPS achieved considerable power generation efficiency in comparison with that of conventional hybrid systems. In addition, the CSWS-HPS is more compact in size and does not emit CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chu CT, Hawkes AD (2020) A geographic information system-based global variable renewable potential assessment using spatially resolved simulation. Energy 193:177–187

    Article  Google Scholar 

  2. Khare V, Nema S, Baredar P (2016) Solar-wind hybrid renewable energy system: a review. Renew Sustain Energy Rev 58:23–33

    Article  Google Scholar 

  3. Jurasz J, Canales FA, Kies A, Guezgouz M, Beluco A (2020) A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions. Sol Energy 195:703–724

    Article  Google Scholar 

  4. Da Luz T, Moura P (2019) Power generation expansion planning with complementarity between renewable sources and regions for 100% renewable energy systems. Int Trans Electr Energy Syst 29(7):2817

    Article  Google Scholar 

  5. Phap VM, Yamamura N, Ishida M, Nga NT, Mizoguchi I, Yamashita T (2019) Study on novel topology of solar-wind hybrid power plant using photovoltaic cell emulating system. J Electr Eng Technol 14(2):627–634

    Article  Google Scholar 

  6. Mohammadjafari M, Ebrahimi R, Darabad VP (2020) Optimal energy management of a microgrid incorporating a novel efficient demand response and battery storage system. J Electr Eng Technol 15(2):571–590

    Article  Google Scholar 

  7. Shi J, Chen T, Meng J, Lin H (2012) Stable wind-solar energy hybrid generation system for road lighting. J Tsinghua Univ Sci Technol 52(2):139–143

    Google Scholar 

  8. Gutierrez-Villalobos JM, Mora-Vazquez JC, Martínez-Hernández MA (2018) Hybrid solar-wind power monitoring and control system. In: 2018 XIV International Engineering Congress (CONIIN). Queretaro, Mexico

  9. Loganathan B, Chowdhury H, Allhibi H, Mustary I, Sony SM, Alam F (2019) Design of a hybrid household power generation system for a coastal area: A case study for Geraldton, Australia. Energy Procedia 160:820–826

    Article  Google Scholar 

  10. Nema P, Nema RK, Rangnekar S (2010) Minimization of green house gases emission by using hybrid energy system for telephony base station site application. Renew Sustain Energy Rev 14(6):1635–1639

    Article  Google Scholar 

  11. Duraisamy R, Chandrasekaran G, Perumal M, Murugesan R (2020) Comparison of results of economic load dispatch using various meta-heuristic techniques. J Eur des Syst Autom 53(2):289–295

    Google Scholar 

  12. Al Ghaithi HM, Fotis GP, Vita V (2017) Techno-economic assessment of hybrid energy off-grid system—a case study for Masirah island in Oman. Int J Power Energy Res 1(2):103–116

    Article  Google Scholar 

  13. Nieto A, Vita V, Maris TI (2016) Power quality improvement in power grids with the integration of energy storage systems. Int J Eng Res Technol 5(7):438–443

    Google Scholar 

  14. Nieto A, Vita V, Ekonomou L, Mastorakis NE (2016) Economic analysis of energy storage system integration with a grid connected intermittent power plant, for power quality purposes. WSEAS Trans Power Syst 11:65–71

    Google Scholar 

  15. Vignesh J, Christopher AS, Albert T, Selvan CPT, Sunil J (2020) Design and fabrication of vertical axis wind mill with solar system. Mater Today 21(1):10–14

    Google Scholar 

  16. Nyemba WR, Chinguwa S, Mushanguri I, Mbohwa C (2019) Optimization of the design and manufacture of a solar-wind hybrid street light. Procedia Manuf 35:285–290

    Article  Google Scholar 

  17. Baghaee HR, Mirsalim M, Gharehpetian GB (2017) Multi-objective optimal power management and sizing of a reliable wind/PV microgrid with hydrogen energy storage using MOPSO. JIntell Fuzzy Syst 32(3):1753–1773

    Article  Google Scholar 

  18. Tina GM, Gagliano S (2011) Probabilistic modelling of hybrid solar/wind power system with solar tracking system. Renew Energy 36(6):1719–1727

    Article  Google Scholar 

  19. Abdelsalam M, Elmohandes MT, Elghazaly M (2020) An efficient tracking of MPP in PV systems using a newly-formulated P&O-MPPT method under varying irradiation levels. J Electr Eng Technol 15(1):501–513

    Article  Google Scholar 

  20. Chandrasekaran G, Periyasamy S, Panjappagounder Rajamanickam KP (2020) Minimization of test time in system on chip using artificial intelligence-based test scheduling techniques. Neural Comput Appl 32(9):5303–5312

    Article  Google Scholar 

  21. Chandrasekaran G, Periyasamy S, Karthikeyan PR (2019) Test scheduling for system on chip using modified firefly and modified ABC algorithms. SN Appl Sci 1(9):1079

    Article  Google Scholar 

  22. Aditya A, Srinivas G (2019) The numerical analysis of NACA 0018 airfoil: Studying the effect of flap. Int J Mech Prod Eng Res Dev 9(4):1047–1054

    Google Scholar 

  23. Griffith DT, Johanns W (2013) Carbon design studies for large blades: performance and cost tradeoffs for the Sandia 100-meter wind turbine blade. In: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Boston, MA, USA

  24. Chuong TT, Van Hung N, Nam NH (2019) Assessment of wind turbine generators on reliability of distribution network. J Electr Eng Technol 14(6):2217–2224

    Article  Google Scholar 

  25. Shah SR, Kumar R, Raahemifar K, Fung AS (2018) Design, modeling and economic performance of a vertical axis wind turbine. Energy Rep 4:619–623

    Article  Google Scholar 

  26. Paraschivoiu I (2002) Wind turbine design: with emphasis on Darrieus concept. Presses inter Polytechnique, Canada

    Google Scholar 

  27. Templin RJ, Rangi RS (1983) Vertical-axis wind turbine development in Canada. IEEE Proc A (Phys Sci Meas Instrum Manag Educ Rev) 130(9):555–561

    Article  Google Scholar 

  28. Elsakka MM, Ingham DB, Ma L, Pourkashanian M (2019) CFD analysis of the angle of attack for a vertical axis wind turbine blade. Energy Convers Manag 182:154–165

    Article  Google Scholar 

  29. Zhao Z, Wang T, Huang J (2014) Influence analysis of installation angles on aerodynamics of vertical axis wind rotors. Proc Chin Soc Electr Eng 38(8):1304–1309

    Google Scholar 

  30. Mohamed OS, Ibrahim AA, Etman AK, Abdelfatah AA, Elbaz AM (2020) Numerical investigation of Darrieus wind turbine with slotted airfoil blades. Energy Convers Manag X 5:100026

    Google Scholar 

  31. Malinowski M, Milczarek A, Kot R, Goryca Z, Szuster JT (2015) Optimized energy-conversion systems for small wind turbines: renewable energy sources in modern distributed power generation systems. IEEE Power Electron Mag 2(3):16–30

    Article  Google Scholar 

  32. Posa A (2020) Influence of tip speed ratio on wake features of a vertical axis wind turbine. J Wind Eng Ind Aerodyn 197:104076

    Article  Google Scholar 

  33. Amano RS, Malloy RJ (2009) CFD analysis on aerodynamic design optimization of wind turbine rotor blades. World Acad Sci Eng Technol 3(12):1450–1454

    Google Scholar 

  34. Bazilevs Y, Hsu M, Akkerman I, Wright S, Takizawa K, Henicke B, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics. Int J Numer Meth Fluids 3:207–235

    Article  Google Scholar 

  35. Burlando M, Ricci A, Freda A, Repetto MP (2015) Numerical and experimental methods to investigate the behaviour of vertical-axis wind turbines with stators. J Wind Eng Ind Aerodyn 144:125–133

    Article  Google Scholar 

  36. Sun Y, Zhang L (2010) Numerical simulation of the unsteady flow and power of horizontal axis wind turbine using sliding mesh. In: 2010 Asia-Pacific Power and Energy Engineering Conference. Chengdu, China

  37. Kusiak A, Song Z (2010) Design of wind farm layout for maximum wind energy capture. Renew Energy 35(3):685–694

    Article  Google Scholar 

  38. Rezaeiha A, Montazeri H, Blocken B (2019) On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines. Energy 180:838–857

    Article  Google Scholar 

  39. Rogowski K (2018) Numerical studies on two turbulence models and a laminar model for aerodynamics of a vertical-axis wind turbine. J Mech Sci Technol 32(5):2079–2088

    Article  Google Scholar 

  40. Meana-Fernández A, Fernández Oro JM, Argüelles Díaz KM, Velarde-Suárez S (2019) Turbulence-model comparison for aerodynamic-performance prediction of a typical vertical-axis wind-turbine airfoil. Energies 12(3):488

    Article  Google Scholar 

  41. Wu Y, Lin CY, Huang CE, Lyu SD (2019) Investigation of multiblade wind-turbine wakes in turbulent boundary layer. J Energy Eng 145(6):04019023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhong Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, H., Pan, T., Zhu, M. et al. Structural Optimization of Compact Spherical Wind-Solar Hybrid Power System. J. Electr. Eng. Technol. 16, 2433–2446 (2021). https://doi.org/10.1007/s42835-021-00790-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42835-021-00790-w

Keywords

Navigation