Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Soil Ecology Letters
  3. Article
The relative importance of soil moisture in predicting bacterial wilt disease occurrence
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Associations among the communities of soil-borne pathogens, soil edaphic properties and disease incidence in the field pea root rot complex

22 October 2020

Kimberly Zitnick-Anderson, Luis E. del Río Mendoza, … Julie S. Pasche

Low soil moisture predisposes field-grown chickpea plants to dry root rot disease: evidence from simulation modeling and correlation analysis

22 March 2021

Ranjita Sinha, Vadivelmurugan Irulappan, … Muthappa Senthil-Kumar

The fungal community outperforms the bacterial community in predicting plant health status

20 August 2021

Liangliang Liu, Yuanyuan Yan, … Xinqi Huang

Characterization of the belowground microbial community and co-occurrence networks of tobacco plants infected with bacterial wilt disease

07 July 2022

Haiting Wang, Chuanfa Wu, … Jianping Chen

Prediction of leaf Bloch disease risk in Norwegian spring wheat based on weather factors and host phenology

17 February 2021

Anne-Grete Roer Hjelkrem, Andrea Ficke, … Guro Brodal

A machine learning interpretation of the contribution of foliar fungicides to soybean yield in the north‐central United States

21 September 2021

Denis A. Shah, Thomas R. Butts, … Paul D. Esker

Soil Factors Related to within-Field Yield Variation in Commercial Potato Fields in Prince Edward Island Canada

18 February 2021

Bernie J. Zebarth, Sherry Fillmore, … Louis-Pierre Comeau

Multifunctionality and microbial communities in agricultural soils regulate the dynamics of a soil-borne pathogen

23 January 2021

Yanqing Guo, Hui Luo, … Gehong Wei

Statistical and machine learning methods for crop yield prediction in the context of precision agriculture

30 March 2022

Hannah Burdett & Christopher Wellen

Download PDF

Associated Content

Part of a collection:

Soil Microbial Ecology

  • Research Article
  • Published: 15 April 2021

The relative importance of soil moisture in predicting bacterial wilt disease occurrence

  • Gaofei Jiang1,
  • Ningqi Wang1,
  • Yaoyu Zhang1,
  • Zhen Wang1,
  • Yuling Zhang1,
  • Jiabao Yu1,
  • Yong Zhang2,
  • Zhong Wei1,
  • Yangchun Xu1,
  • Stefan Geisen3,
  • Ville-Petri Friman4 &
  • …
  • Qirong Shen1 

Soil Ecology Letters volume 3, pages 356–366 (2021)Cite this article

  • 492 Accesses

  • 10 Citations

  • 3 Altmetric

  • Metrics details

Abstract

Soil-borne plant diseases cause major economic losses globally. This is partly because their epidemiology is difficult to predict in agricultural fields, where multiple environmental factors could determine disease outcomes. Here we used a combination of field sampling and direct experimentation to identify key abiotic and biotic soil properties that can predict the occurrence of bacterial wilt caused by pathogenic Ralstonia solanacearum. By analyzing 139 tomato rhizosphere soils samples isolated from six provinces in China, we first show a clear link between soil properties, pathogen density and plant health. Specifically, disease outcomes were positively associated with soil moisture, bacterial abundance and bacterial community composition. Based on soil properties alone, random forest machine learning algorithm could predict disease outcomes correctly in 75% of cases with soil moisture being the most significant predictor. The importance of soil moisture was validated causally in a controlled greenhouse experiment, where the highest disease incidence was observed at 60% of maximum water holding capacity. Together, our results show that local soil properties can predict disease occurrence across a wider agricultural landscape, and that management of soil moisture could potentially offer a straightforward method for reducing crop losses to R. solanacearum.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  • Aung, K., Jiang, Y., He, S.Y., 2018. The role of water in plant-microbe interactions. Plant Journal 93, 771–780.

    Article  CAS  Google Scholar 

  • Beattie, G.A., 2011. Water relations in the interaction of foliar bacterial pathogens with plants. Annual Review of Phytopathology 49, 533–555.

    Article  CAS  Google Scholar 

  • Berg, M., Koskella, B., 2018. Nutrient- and dose-dependent microbiome-mediated protection against a plant pathogen. Current Biology 28, 2487–2492.e3.

    Article  CAS  Google Scholar 

  • Breiman, L., and Cutler, A., for Fortran original, Liaw, A., and Wiener, M., for R. port 2018. randomForest: Breiman and Cutler’s Random Forests for Classification and Regression.

  • Brockett, B.F.T., Prescott, C.E., Grayston, S.J., 2012. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology & Biochemistry 44, 9–20.

    Article  CAS  Google Scholar 

  • Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R., 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335–336.

    Article  CAS  Google Scholar 

  • Cavagnaro, T.R., 2016. Soil moisture legacy effects: Impacts on soil nutrients, plants and mycorrhizal responsiveness. Soil Biology & Biochemistry 95, 173–179.

    Article  CAS  Google Scholar 

  • Chairman, J.F.P., Gardner, W.R., Elliott, L.F., eds., 1981. Water potential relations in soil microbiology, SSSA Special Publications. John Wiley & Sons, Ltd.

  • Chen, M.M., Zhu, Y.G., Su, Y.H., Chen, B.D., Fu, B.J., Marschner, P., 2007. Effects of soil moisture and plant interactions on the soil microbial community structure. European Journal of Soil Biology 43, 31–38.

    Article  CAS  Google Scholar 

  • Cheng, Y.T., Zhang, L., He, S.Y., 2019. Plant-microbe interactions facing environmental challenge. Cell Host & Microbe 26, 183–192.

    Article  CAS  Google Scholar 

  • Cole, J.R., Wang, Q., Fish, J.A., Chai, B., McGarrell, D.M., Sun, Y., Brown, C.T., Porras-Alfaro, A., Kuske, C.R., Tiedje, J.M., 2014. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Research 42, D633–D642.

    Article  CAS  Google Scholar 

  • Cuzick, J., 1985. A Wilcoxon-type test for trend. Statistics in Medicine 4, 87–90.

    Article  CAS  Google Scholar 

  • Dalsing, B.L., Truchon, A.N., Gonzalez-Orta, E.T., Milling, A.S., Allen, C., 2015. Ralstonia solanacearum uses inorganic nitrogen metabolism for virulence, ATP production, and detoxification in the oxygen-limited host xylem environment. mBio 6, e02471.

    Article  Google Scholar 

  • de Mendiburu, F., 2020. agricolae: Statistical Procedures for Agricultural Research. http://tarwi.lamolina.edu.pe/~fmendiburu

  • Dixon, P., 2003. VEGAN, a package of R functions for community ecology. Journal of Vegetation Science 14, 927–930.

    Article  Google Scholar 

  • Edgar, R.C., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics (Oxford, England) 26, 2460–2461.

    CAS  Google Scholar 

  • Fierer, N., Jackson, J.A., Vilgalys, R., Jackson, R.B., 2005. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Applied and Environmental Microbiology 71, 4117–4120.

    Article  CAS  Google Scholar 

  • Genin, S., Denny, T.P., 2012. Pathogenomics of the Ralstonia solanacearum species complex. Annual Review of Phytopathology 50, 67–89.

    Article  CAS  Google Scholar 

  • Gu, S., Wei, Z., Shao, Z., Friman, V.P., Cao, K., Yang, T., Kramer, J., Wang, X., Li, M., Mei, X., Xu, Y., Shen, Q., Kümmerli, R., Jousset, A., 2020. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nature Microbiology 5, 1002–1010.

    Article  CAS  Google Scholar 

  • Gu, Y., Wang, X., Yang, T., Friman, V.P., Geisen, S., Wei, Z., Xu, Y., Jousset, A., Shen, Q., 2020. Chemical structure predicts the effect of plant-derived low-molecular weight compounds on soil microbiome structure and pathogen suppression. Functional Ecology 34, 2158–2169.

    Article  Google Scholar 

  • Hayward, A.C., 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annual Review of Phytopathology 29, 65–87.

    Article  CAS  Google Scholar 

  • Hothorn, T., Bretz, F., Westfall, P., 2008. Simultaneous inference in general parametric models. Biometrical Journal 50, 346–363

    Article  Google Scholar 

  • Huber, L., Gillespie, T.J., 1992. Modeling leaf wetness in relation to plant disease epidemiology. Annual Review of Phytopathology 30, 553–577.

    Article  Google Scholar 

  • Islam, T., Toyama, K., 2004. Effect of moisture conditions and pre-incubation at low temperature on bacterial wilt of tomato caused by Ralstonia solanacearum. Microbes and Environments 19, 244–247.

    Article  Google Scholar 

  • Janvier, C., Villeneuve, F., Alabouvette, C., Edel-Hermann, V., Mateille, T., Steinberg, C., 2007. Soil health through soil disease suppression: Which strategy from descriptors to indicators? Soil Biology & Biochemistry 39, 1–23.

    Article  CAS  Google Scholar 

  • Jiang, G., 2016. Pathogenesis and modelling of infection dynamics in Ralstonia solanacearum (Thesis). Http://www.theses.fr. toulouse 3.

  • Jiang, G., Wei, Z., Xu, J., Chen, H., Zhang, Y., She, X., Macho, A.P., Ding, W., Liao, B., 2017. Bacterial wilt in China: History, current status, and future perspectives. Frontiers of Plant Science 8, 1549.

    Article  Google Scholar 

  • Jiang, Y., Huang, M., Zhang, M., Lan, J., Wang, W., Tao, X., Liu, Y., 2018. Transcriptome analysis provides novel insights into high-soil-moisture-elevated susceptibility to Ralstonia solanacearum infection in ginger (Zingiber officinale Roscoe cv. Southwest). Plant Physiology and Biochemistry 132, 547–556.

    Article  CAS  Google Scholar 

  • Kabacoff, R., ed., 2015. R in Action, 2nd Edition. Manning Publications Co., CTUnited States.

  • Kahm, M., Hasenbrink, G., Lichtenberg-Fraté, H., Ludwig, J., Kschischo, M., 2010. grofit: Fitting Biological Growth Curves with R. Journal of Statistical Software 33, 1–21.

    Article  Google Scholar 

  • Kearns, D.B., 2010. A field guide to bacterial swarming motility. Nature Reviews. Microbiology 8, 634–644.

    Article  CAS  Google Scholar 

  • Kramer, P.J., 1983. Water Relations of Plants. Elsevier Science, Oxford.

    Google Scholar 

  • Kwak, M.J., Kong, H.G., Choi, K., Kwon, S.K., Song, J.Y., Lee, J., Lee, P.A., Choi, S.Y., Seo, M., Lee, H.J., Jung, E.J., Park, H., Roy, N., Kim, H., Lee, M.M., Rubin, E.M., Lee, S.W., Kim, J.F., 2018. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nature Biotechnology 36, 1100–1109.

    Article  CAS  Google Scholar 

  • Larson, J.E., Funk, J.L., 2016. Seedling root responses to soil moisture and the identification of a belowground trait spectrum across three growth forms. New Phytologist 210, 827–838.

    Article  Google Scholar 

  • Lê, S., Josse, J., Husson, F., 2008. FactoMineR: an R package for multivariate analysis. Journal of Statistical Software 25, 1–18.

    Article  Google Scholar 

  • Lee, S.M., Kong, H.G., Song, G.C., Ryu, C.M., 2021. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease. ISME Journal 15, 330–347.

    Article  CAS  Google Scholar 

  • Li, S., Liu, Y., Wang, J., Yang, L., Zhang, S., Xu, C., Ding, W., 2017a. Soil acidification aggravates the occurrence of bacterial wilt in south China. Frontiers in Microbiology 8, 703.

    Article  Google Scholar 

  • Li, S., Xu, C., Wang, J., Guo, B., Yang, L., Chen, J., Ding, W., 2017b. Cinnamic, myristic and fumaric acids in tobacco root exudates induce the infection of plants by Ralstonia solanacearum. Plant and Soil 412, 381–395.

    Article  CAS  Google Scholar 

  • Li, Y., Uddin, W., Kaminski, J.E., 2014. Effects of relative humidity on infection, colonization and conidiation of Magnaporthe orzyae on perennial ryegrass. Plant Pathology 63, 590–597.

    Article  CAS  Google Scholar 

  • Mainiero, R., Kazda, M., 2005. Effects of Carex rostrata on soil oxygen in relation to soil moisture. Plant and Soil 270, 311–320.

    Article  CAS  Google Scholar 

  • Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S.V., Machado, M.A., Toth, I., Salmond, G., Foster, G.D., 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology 13, 614–629.

    Article  Google Scholar 

  • Mondal, B., Bhattacharya, I., Khatua, D.C., 2014. Incidence of bacterial wilt disease in West Bengal, India. Academia Journal of Agricultural Research 2, 139–146.

    Google Scholar 

  • Orr, R., Nelson, P.N., 2018. Impacts of soil abiotic attributes on Fusarium wilt, focusing on bananas. Applied Soil Ecology 132, 20–33.

    Article  Google Scholar 

  • Panchal, S., Chitrakar, R., Thompson, B.K., Obulareddy, N., Roy, D., Hambright, W.S., Melotto, M., 2016. Regulation of stomatal defense by air relative humidity. Plant Physiology 172, 2021–2032.

    Article  CAS  Google Scholar 

  • Pansu, M., Gautheyrou, J., eds., 2006. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods. Springer, Berlin, Heidelberg.

    Google Scholar 

  • Patro, S.G.K., Sahu, K.K., 2015. Normalization: a preprocessing stage. ArXiv 1503.06462.

  • Peyraud, R., Cottret, L., Marmiesse, L., Genin, S., 2018. Control of primary metabolism by a virulence regulatory network promotes robustness in a plant pathogen. Nature Communications 9, 418.

    Article  Google Scholar 

  • Peyraud, R., Cottret, L., Marmiesse, L., Gouzy, J., Genin, S., 2016. A resource allocation trade-off between virulence and proliferation drives metabolic versatility in the plant pathogen Ralstonia solanacearum. PLoS Pathogens 12, e1005939.

    Article  Google Scholar 

  • Pimentel, C.S., Ayres, M.P., 2018. Latitudinal patterns in temperature-dependent growth rates of a forest pathogen. Journal of Thermal Biology 72, 39–43.

    Article  Google Scholar 

  • R Core Team, 2020. The R Stats Package.

  • Rahman, K.A., Othman, R., 2020. Influence of pH levels on disease development in oil palm seedling roots infected with Ganoderma boninensis. Rhizosphere 13, 100181.

    Article  Google Scholar 

  • Raza, W., Wang, J., Wu, Y., Ling, N., Wei, Z., Huang, Q., Shen, Q., 2016. Effects of volatile organic compounds produced by Bacillus amyloliquefaciens on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum. Applied Microbiology and Biotechnology 100, 7639–7650.

    Article  CAS  Google Scholar 

  • Satou, M., Kubota, M., Nishi, K., 2006. Measurement of horizontal and vertical movement of Ralstonia solanacearum in soil. Journal of Phytopathology 154, 592–597.

    Article  CAS  Google Scholar 

  • Schandry, N., 2017. A practical guide to visualization and statistical analysis of R. solanacearum infection data using R. Frontiers of Plant Science 8, 623.

    Article  Google Scholar 

  • Schönfeld, J., Heuer, H., van Elsas, J.D., Smalla, K., 2003. Specific and sensitive detection of Ralstonia solanacearum in soil on the basis of PCR amplification of fliC fragments. Applied and Environmental Microbiology 69, 7248–7256.

    Article  Google Scholar 

  • Sinha, R., Gupta, A., Senthil-Kumar, M., 2016. Understanding the impact of drought on foliar and xylem invading bacterial pathogen stress in chickpea. Frontiers of Plant Science 7, 902.

    Article  Google Scholar 

  • Siregar, B.A., Giyanto, Hidayat, S.H., Siregar, I.Z., Tjahjono, B., 2020. Epidemiology of bacterial wilt disease on Eucalyptus pellita F. Muell. in Indonesia. IOP Conference Series: Earth and Environmental Science 468, 012033.

    Google Scholar 

  • Smilanick, J.L., Mansour, M.F., 2007. Influence of temperature and humidity on survival of Penicillium digitatum and Geotrichum citriaurantii. Plant Disease 91, 990–996.

    Article  CAS  Google Scholar 

  • Trivedi, P., Leach, J.E., Tringe, S.G., Sa, T., Singh, B.K., 2020. Plantmicrobiome interactions: from community assembly to plant health. Nature Reviews Microbiology 18, 607–621.

    Article  CAS  Google Scholar 

  • van Elsas, J.D., Kastelein, P., van Bekkum, P., van der Wolf, J.M., de Vries, P.M., van Overbeek, L.S., 2000. Survival of Ralstonia solanacearum Biovar 2, the causative agent of potato brown rot, in field and microcosm soils in temperate climates. Phytopathology 90, 1358–1366.

    Article  CAS  Google Scholar 

  • Velásquez, A.C., Castroverde, C.D.M., He, S.Y., 2018. Plant-pathogen warfare under changing climate conditions. Current Biology 28, R619–R634.

    Article  Google Scholar 

  • Wang, R., Zhang, H., Sun, L., Qi, G., Chen, S., Zhao, X., 2017. Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak. Scientific Reports 7, 343.

    Article  Google Scholar 

  • Wei, Z., Friman, V.P., Pommier, T., Geisen, S., Jousset, A., Shen, Q., 2020. Rhizosphere immunity: targeting the underground for sustainable plant health management. Frontiers of Agricultural Science and Engineering 7, 317–328.

    Article  Google Scholar 

  • Wei, Z., Gu, Y., Friman, V.P., Kowalchuk, G.A., Xu, Y., Shen, Q., Jousset, A., 2019. Initial soil microbiome composition and functioning predetermine future plant health. Science Advances 5, eaaw0759.

    Article  CAS  Google Scholar 

  • Wei, Z., Hu, J., Gu, Y., Yin, S., Xu, Y., Jousset, A., Shen, Q., Friman, V. P., 2018. Ralstonia solanacearum pathogen disrupts bacterial rhizosphere microbiome during an invasion. Soil Biology & Biochemistry 118, 8–17.

    Article  CAS  Google Scholar 

  • Wei, Z., Huang, J., Yang, T., Jousset, A., Xu, Y., Shen, Q., Friman, V. P., 2017. Seasonal variation in the biocontrol efficiency of bacterial wilt is driven by temperature-mediated changes in bacterial competitive interactions. Journal of Applied Ecology 5, 1440–1448.

    Article  Google Scholar 

  • Wei, Z., Huang, J.F., Hu, J., Gu, Y.A., Yang, C.L., Mei, X.L., Shen, Q. R., Xu, Y.C., Friman, V.P., 2015a. Altering transplantation time to avoid periods of high temperature can efficiently reduce bacterial wilt disease incidence with tomato. PLoS One 10, e0139313.

    Article  Google Scholar 

  • Wei, Z., Yang, T., Friman, V.P., Xu, Y., Shen, Q., Jousset, A., 2015b. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nature Communications 6, 8413.

    Article  CAS  Google Scholar 

  • Wei, Z., Yang, X., Yin, S., Shen, Q., Ran, W., Xu, Y., 2011. Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field. Applied Soil Ecology 48, 152–159.

    Article  Google Scholar 

  • Wen, T., Zhao, M., Liu, T., Huang, Q., Yuan, J., Shen, Q., 2020. High abundance of Ralstonia solanacearum changed tomato rhizosphere microbiome and metabolome. BMC Plant Biology 20, 166.

    Article  CAS  Google Scholar 

  • Wickham, H., Chang, W., Henry, L., Pedersen, T.L., Takahashi, K., Wilke, C., Woo, K., Yutani, H., Dunnington, D., RStudio, 2020. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics.

  • Wu, X., Li, H., Wang, Y., Zhang, X., 2020. Effects of bio-organic fertiliser fortified by Bacillus cereus QJ-1 on tobacco bacterial wilt control and soil quality improvement. Biocontrol Science and Technology 30, 351–369.

    Article  Google Scholar 

  • Xin, X.F., Nomura, K., Aung, K., Velásquez, A.C., Yao, J., Boutrot, F., Chang, J.H., Zipfel, C., He, S.Y., 2016. Bacteria establish an aqueous living space in plants crucial for virulence. Nature 539, 524–529.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Alexandre Jousset and Dr. Zhipeng Liu for helpful discussions. This research was financially supported by the National Natural Science Foundation of China (41922053, 42090062, 31972504 and 42007038), and the Fundamental Research Funds for the Central Universities (KJQN202116-KJQN202117, KYXK202009-KYXK202012), the Natural Science Foundation of Jiangsu Province (BK20190518, BK20180527 and BK20200533), the China Postdoctoral Science Foundation (2019M651848) and technically supported by the Bioinformatics Center of Nanjing Agricultural University. S.G. is funded by the NWO-Veni grant (016.Veni.181.078 to S.G.). V.F. is funded by the Royal Society (RSG\R1\180213 and CHL\R1\180031) and jointly by a grant from UKRI, Defra, and the Scottish Government, under the Strategic Priorities Fund Plant Bacterial Diseases programme (BB/T010606/1) at the University of York.

Author information

Authors and Affiliations

  1. Key Laboratory of Plant immunity, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, 210095, China

    Gaofei Jiang, Ningqi Wang, Yaoyu Zhang, Zhen Wang, Yuling Zhang, Jiabao Yu, Zhong Wei, Yangchun Xu & Qirong Shen

  2. College of Resources and Environment, Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, Southwest University, Chongqing, 400715, China

    Yong Zhang

  3. Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands

    Stefan Geisen

  4. Department of Biology, University of York, York, YO10 5DD, UK

    Ville-Petri Friman

Authors
  1. Gaofei Jiang
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Ningqi Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Yaoyu Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Zhen Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Yuling Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Jiabao Yu
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Yong Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Zhong Wei
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. Yangchun Xu
    View author publications

    You can also search for this author in PubMed Google Scholar

  10. Stefan Geisen
    View author publications

    You can also search for this author in PubMed Google Scholar

  11. Ville-Petri Friman
    View author publications

    You can also search for this author in PubMed Google Scholar

  12. Qirong Shen
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Zhong Wei.

Ethics declarations

The authors declare that there are no relevant conflicts of interest.

Additional information

Highlights

• Soil moisture is a key predictor of bacterial wilt disease (BWD) across China.

• Other soil properties have lesser role and are locally associated to BWD.

• Soil moisture can causally drive BWD in greenhouse experiment.

• Water management strategies could potentially be used in BWD control.

Supplementary files

The relative importance of soil moisture in predicting bacterial wilt disease occurrence

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, G., Wang, N., Zhang, Y. et al. The relative importance of soil moisture in predicting bacterial wilt disease occurrence. Soil Ecol. Lett. 3, 356–366 (2021). https://doi.org/10.1007/s42832-021-0086-2

Download citation

  • Received: 22 December 2020

  • Revised: 09 February 2021

  • Accepted: 24 February 2021

  • Published: 15 April 2021

  • Issue Date: December 2021

  • DOI: https://doi.org/10.1007/s42832-021-0086-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Bacterial wilt disease
  • Soil moisture
  • Soil physicochemical properties
  • Rhizosphere bacterial communities
  • Ralstonia solanacearum
  • Random forest algorithm
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Associated Content

Part of a collection:

Soil Microbial Ecology

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.239.117.1

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.