Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Soil Ecology Letters
  3. Article
Assembly and variation of root-associated microbiota of rice during their vegetative growth phase with and without lindane pollutant
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Combined metagenomic and metabolomic analyses reveal that Bt rice planting alters soil C-N metabolism

23 January 2023

Peng Li, Shuifeng Ye, … Yunfei Wu

Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization

22 October 2019

Shuaimin Chen, Tatoba R. Waghmode, … Binbin Liu

Metagenomic and machine learning-aided identification of biomarkers driving distinctive Cd accumulation features in the root-associated microbiome of two rice cultivars

22 February 2023

Zhongyi Cheng, Qiang Zheng, … Jianming Xu

Bacterial structure and dynamics in mango (Mangifera indica) orchards after long term organic and conventional treatments under subtropical ecosystem

15 October 2021

Govind Kumar, Archana Suman, … Shailendra Rajan

Variations of rhizospheric soil microbial communities in response to continuous Andrographis paniculata cropping practices

15 June 2020

Junren Li, Xiuzhen Chen, … Rui He

Changes of soil-rhizosphere microbiota after organic amendment application in a Hordeum vulgare L. short-term greenhouse experiment

06 August 2020

Michael M. Obermeier, Eva-Maria L. Minarsch, … Peter Schröder

Rhizosphere microbiome modulated effects of biochar on ryegrass 15N uptake and rhizodeposited 13C allocation in soil

24 March 2021

Yingyi Fu, Amit Kumar, … Jianming Xu

Reduced chemodiversity suppresses rhizosphere microbiome functioning in the mono-cropped agroecosystems

16 July 2022

Pengfa Li, Jia Liu, … Zhongpei Li

Influence of salt stress on the rhizosphere soil bacterial community structure and growth performance of groundnut (Arachis hypogaea L.)

13 January 2020

Yang Xu, Guanchu Zhang, … Zhimeng Zhang

Download PDF

Associated Content

Part of a collection:

Soil Pollution, Control, and Remediation

  • Research Article
  • Published: 02 November 2020

Assembly and variation of root-associated microbiota of rice during their vegetative growth phase with and without lindane pollutant

  • Jiayin Feng1,2,
  • Ashley E. Franks3,4,
  • Zhijiang Lu1,2,
  • Jianming Xu1,2 &
  • …
  • Yan He1,2 

Soil Ecology Letters volume 3, pages 207–219 (2021)Cite this article

  • 438 Accesses

  • 14 Citations

  • 6 Altmetric

  • Metrics details

Abstract

Soil-derived microbiota associated with plant roots are conducive to plant growth and stress resistance. However, the spatio-temporal dynamics of microbiota in response to organochlorine pollution during the unstable vegetative growth phase of rice is not well understood. In this study, we focused on the rice (Oryza sativa L.) microbiota across the bulk soil, rhizosphere and endosphere compartments during the vegetative growth phase in two different soils with and without lindane pollutant. The results showed that the factors of growth time, soil types and rhizo-compartments had significant influence on the microbial communities of rice, while lindane mostly stimulated the construction of endosphere microbiota at the vegetative phase. Active rice root-soil-microbe interactions induced an inhibition effect on lindane removal at the later vegetative growth phase in rice-growth-dependent anaerobic condition, likely due to the root oxygen loss and microbial mediated co-occurring competitive electron-consuming redox processes in soils. Each rhizo-compartment owned distinct microbial communities, and therefore, presented specific ecologically functional categories, while the moderate functional differences were also affected by plants species and residual pollution stress. This work revealed the underground micro-ecological process of microbiota and especially their potential linkage to the natural attenuation of residual organochlorine such as lindane.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  • Asshauer, K.P., Wemheuer, B., Daniel, R., Meinicke, P., 2015. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics (Oxford, England) 31, 2882–2884.

    Article  CAS  Google Scholar 

  • Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery ratea practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series A, (Statistics in Society) 57, 289–300.

    Google Scholar 

  • Bulgarelli, D., Rott, M., Schlaeppi, K., Ver Loren Van Themaat, E., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R., Schmelzer, E., Peplies, J., Gloeckner, F.O., Amann, R., Eickhorst, T., Schulze-Lefert, P., 2012. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95.

    Article  CAS  Google Scholar 

  • Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Tumbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R., 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335–336.

    Article  CAS  Google Scholar 

  • Castrillo, G., Teixeira, P.J.P.L., Paredes, S.H., Law, T.F., de Lorenzo, L., Feltcher, M.E., Finkel, O.M., Breakfield, N.W., Mieczkowski, P., Jones, C.D., Paz-Ares, J., Dangl, J.L., 2017. Root microbiota drive direct integration of phosphate stress and immunity. Nature 543, 513–518.

    Article  CAS  Google Scholar 

  • Chaparro, J.M., Badri, D.V., Vivanco, J.M., 2014. Rhizosphere microbiome assemblage is affected by plant development. ISME Journal 8, 790–803.

    Article  CAS  Google Scholar 

  • Chen, L., Ran, Y., Xing, B., Mai, B., He, J., We, X., Fu, J., Sheng, G., 2015. Content and source of polycyclic aromatic hydrocarbons and organochlorine pesticides in vegetable soils of Guangzhou, China. Chemosphere 60, 879–890.

    Article  Google Scholar 

  • Chen, X., Wu, Y., Huang, X., Lü, H., Zhao, H., Mo, C., Li, H., Cai, Q., Wong, M., 2018. Variations in microbial community and di-(2-ethylhexyl) phthalate (DEHP) dissipation in different rhizospheric compartments between low- and high-DEHP accumulating cultivars of rice (Oryza sativa L.). Ecotoxicology and Environmental Safety 163, 567–576.

    Article  CAS  Google Scholar 

  • Chouychai, W., Kruatrachue, M., Lee, H., 2015. Effect of plant growth regulators on phytoremediation of hexachlorocyclohexane-contaminated soil. International Journal of Phytoremediation 17, 1053–1059.

    Article  CAS  Google Scholar 

  • Dai, Z.M., Su, W.Q., Chen, H.H., Albert, B., Zhao, H.C., Yu, M.J., Yu, L., Philip, C.B., Christopher, W.S., Scott, X.C., Xu, J.M., 2018. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agroecosystems across the globe. Global Change Biology 24, 3452–3461.

    Article  Google Scholar 

  • Deng, Y., Jiang, Y.H., Yang, Y., He, Z., Luo, F., Zhou, J., 2012. Molecular ecological network analyses. BMC Bioinformatics 13, 113.

    Article  Google Scholar 

  • Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A., Sundaresan, V., 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America 112, E911–E920.

    CAS  Google Scholar 

  • Edwards, J.A., Santos-Medellín, C.M., Liechty, Z.S., Nguyen, B., Lurie, E., Eason, S., Phillips, G., Sundaresan, V., 2018. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biology 16, e2003862.

    Article  Google Scholar 

  • Feng, J.Y., Shentu, J., Zhu, Y.J., Tang, C.X., He, Y., Xu, J.M., 2020a. Crop-dependent root-microbe-soil interactions induce contrasting natural attenuation of organochlorine lindane in soils. Environmental Pollution 257, 113580.

    Article  CAS  Google Scholar 

  • Feng, J.Y., Xu, Y., Ma, B., Tang, C.X., Brookes, P.C., He, Y., Xu, J.M., 2019. Assembly of root-associated microbiomes of typical rice cultivars in response to lindane pollution. Environment International 131, 104975.

    Article  CAS  Google Scholar 

  • Feng, J.Y., Zhu, Y.J., Shentu, J., Lu, Z.J., He, Y., Xu, J.M., 2020. 2020b. Pollution adaptive responses of root-associated microbiomes induced the promoted but different attenuation of soil residual lindane. Science of the Total Environment 732, 139170.

    Article  CAS  Google Scholar 

  • Fierer, N., Bradford, M.A., Jackson, R.B., 2007. Toward an ecological classification of soil bacteria. Ecology 6, 1354–1364.

    Article  Google Scholar 

  • Hayat, T., Ding, N., Ma, B., He, Y., Shi, J., Xu, J., 2011. Dissipation of pentachlorophenol in the aerobic-anaerobic interfaces established by the rhizosphere of rice (L.) root. Journal of Environmental Quality 40, 1722–1729.

    Article  CAS  Google Scholar 

  • Hua, X., Shan, Z., 1996. The production and application of pesticides and factor analysis of their pollution in China. Advances in Environmental Sciences 4, 33–45.

    CAS  Google Scholar 

  • Kögel-Knabner, I., Amelung, W., Cao, Z., Fiedler, S., Frenzel, P., Jahn, R., Kalbitz, K., Kölbl, A., Schloter, M., 2010. Biogeochemistry of paddy soils. Geoderma 157, 1–14.

    Article  Google Scholar 

  • Li, Y., Wang, X., 2013. Root-induced changes in radial oxygen loss, rhizosphere oxygen profile, and nitrification of two rice cultivars in Chinese red soil regions. Plant and Soil 365, 115–126.

    Article  CAS  Google Scholar 

  • Lundberg, D.S., Lebeis, S.L., Paredes, S.H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., Rio, T.G.D., Edgar, R.C., Eickhorst, T., Ley, R.E., Hugenholtz, P., Tringe, S. G., Dangl, J.L., 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90.

    Article  CAS  Google Scholar 

  • Luo, J., Tao, Q., Wu, K., Li, J., Qian, J., Liang, Y., Yang, X., Li, T., 2017. Structural and functional variability in root-associated bacterial microbiomes of Cd/Zn hyperaccumulator Sedum alfredii. Applied Microbiology and Biotechnology 101, 7961–7976.

    Article  CAS  Google Scholar 

  • Niu, L., Xu, C., Yao, Y., Liu, K., Yang, F., Tang, M., Liu, W., 2013. Status, influences and risk assessment of hexachlorocyclohexanes in agricultural soils across China. Environmental Science & Technology 47, 12140–12147.

    Article  CAS  Google Scholar 

  • Peperanney, C., Campbell, A.N., Koechli, C.N., Berthrong, S., Buckley, D.H., 2016. Unearthing the ecology of soil microorganisms using a high resolution DNA-SIP approach to explore cellulose and xylose metabolism in soil. Frontiers in Microbiology 7, 703.

    Google Scholar 

  • Phillips, T.M., Seech, A.G., Lee, H., Trevors, J.T., 2005. Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation 16, 363–392.

    Article  CAS  Google Scholar 

  • Poolpak, T., Pokethitiyook, P., Kruatrachue, M., Arjarasirikoon, U., Thanwaniwat, N., 2008. Residue analysis of organochlorine pesticides in the Mae Klong river of Central Thailand. Journal of Hazardous Materials 156, 230–239.

    Article  CAS  Google Scholar 

  • Rani, R., Usmani, Z., Gupta, P., Avantika, C., Aakankshya, D., Vipin, K., 2018. Effects of organochlorine pesticides on plant growth-promoting traits of phosphate-solubilizing rhizobacterium, Paeni-bacillus sp. IITISM08. Environmental Science and Pollution Research International 25, 5668–5680.

    Article  CAS  Google Scholar 

  • Robinson, M.D., McCarthy, D.J., Smyth, G.K., 2009. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics (Oxford, England) 26, 139–140.

    Google Scholar 

  • Salam, J.A., Hatha, M.A.A., Das, N., 2017. Microbial-enhanced lindane removal by sugarcane (Saccharum officinarum) in doped soil-applications in phytoremediation and bioaugmentation. Journal of Environmental Management 193, 394–399.

    Article  Google Scholar 

  • Santos-Medellín, C., Edwards, J., Liechty, Z., Nguyen, B., Sundaresan, V., 2017. Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. mBio 8, e00764–e17.

    Article  Google Scholar 

  • Singha, L.P., Sinha, N., Pandey, P., 2018. Rhizoremediation prospects of polyaromatic hydrocarbon degrading rhizobacteria, that facilitate glutathione and glutathione-S-transferase mediated stress response, and enhance growth of rice plants in pyrene contaminated soil. Ecotoxicology and Environmental Safety 164, 579–588.

    Article  CAS  Google Scholar 

  • Su, Y., Zhu, Y., 2007. Transport mechanisms for the uptake of organic compounds by rice (Oryza sativa) roots. Environmental Pollution 148, 94–100.

    Article  CAS  Google Scholar 

  • Taiz, L., Murphy, A., 1995. Comparison of metallothionein cene expression and nonprotein thiols in ten Arabidopsis ecotypes. Plant Physiology 109, 945–954.

    Article  Google Scholar 

  • Tang, X., Zhang, R., Zhang, Q., Wang, W., 2016. Dehydrochlorination mechanism of γ-hexachlorocyclohexane degraded by dehydrochlorinase LinA from Sphingomonas paucimobilis UT26. RSC Advances 6, 4183–4192.

    Article  CAS  Google Scholar 

  • Walters, W.A., Jin, Z., Youngblut, N., Wallace, J.G., Sutter, J., Zhang, W., González-Peña, A., Peiffer, J., Koren, O., Shi, Q., Knight, R., Glavina Del Rio, T., Tringe, S.G., Buckler, E.S., Dangl, J.L., Ley, R. E., 2018. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proceedings of the National Academy of Sciences of the United States of America 115, 7368–7373.

    Article  Google Scholar 

  • Wang, M., Chen, A., Wong, M., Qiu, R., Cheng, H., Ye, Z., 2011. Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss. Environmental Pollution 159, 1730–1736.

    Article  CAS  Google Scholar 

  • Wu, C., Ye, Z., Li, H., Wu, S., Deng, D., Zhu, Y., Wong, M., 2012. Do radial oxygen loss and external aeration affect iron plaque formation and arsenic accumulation and speciation in rice? Journal of Experimental Botany 63, 2961–2970.

    Article  CAS  Google Scholar 

  • Xu, Y., Ge, Y., Song, J.X., Rensing, C., 2020b. Assembly of root-associated microbial community of typical rice cultivars in different soil types. Journal of Hazardous Materials 56, 249–260.

    CAS  Google Scholar 

  • Xu, Y., He, Y., Zhang, Q., Xu, J., Crowley, D., 2015. Coupling between pentachlorophenol dechlorination and soil redox as revealed by stable carbon isotope, microbial community structure, and biogeochemical data. Environmental Science & Technology 49, 5425–5433.

    Article  CAS  Google Scholar 

  • Xu, Y., Liu, J.Q., Cai, W.S., Feng, J.Y., Lu, Z., Wang, H.Z., Franks, A. E., Tang, C.X., He, Y., Xu, J.M., 2020a. Dynamic processes in conjunction with microbial response to disclose the biochar effect on pentachlorophenol degradation under both aerobic and anaerobic conditions. Journal of Hazardous Materials 384, 121503.

    Article  CAS  Google Scholar 

  • Xu, Y., Xue, L., Ye, Q., Franks, A.E., Zhu, M., Feng, X., Xu, J., He, Y., 2018. Inhibitory effects of sulfate and nitrate reduction on reductive dechlorination of PCP in a flooded paddy soil. Frontiers in Microbiology 9, 9.

    Google Scholar 

  • Xue, L., Feng, X., Xu, Y., Li, X., Zhu, M., Xu, J., He, Y., 2017. The dechlorination of pentachlorophenol under a sulfate and iron reduction co-occurring anaerobic environment. Chemosphere 182, 166–173.

    Article  CAS  Google Scholar 

  • Zecchin, S., Corsini, A., Martin, M., Romani, M., Beone, G.M., Zanchi, R., Zanzo, E., Tenni, D., Fontanella, M.C., Cavalca, L., 2017. Rhizospheric iron and arsenic bacteria affected by water regime: Implications for metalloid uptake by rice. Soil Biology & Biochemistry 106, 129–137.

    Article  CAS  Google Scholar 

  • Zhang, A., Liu, W., Yuan, H., Zhou, S., Su, Y., Li, Y., 2011. Spatial distribution of hexachlorocyclohexanes in agricultural soils in Zhejiang Province, China, and correlations with elevation and temperature. Environmental Science & Technology 45, 6303–6308.

    Article  CAS  Google Scholar 

  • Zhang, J., Liu, Y., Zhang, N., Hu, B., Jin, T., Xu, H., Qin, Y., Yan, P., Zhang, X., Guo, X., Hui, J., Cao, S., Wang, X., Wang, C., Wang, H., Qu, B., Fan, G., Yuan, L., Garrido-Oter, R., Chu, C., Bai, Y., 2019. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology 37, 676–684.

    Article  CAS  Google Scholar 

  • Zhang, J., Zhang, N., Liu, Y.X., Zhang, X., Hu, B., Qin, Y., Xu, H., Wang, H., Guo, X., Qian, J., Wang, W., Zhang, P., Jin, T., Chu, C., Bai, Y., 2018. Root microbiota shift in rice correlates with resident time in the field and developmental stage. Science China. Life Sciences 61, 613–621.

    Google Scholar 

  • Zhou, X., Zhang, J., Pan, D., Ge, X., Jin, X., Chen, S., Wu, F., 2018. p-Coumaric can alter the composition of cucumber rhizosphere microbial communities and induce negative plant-microbial interactions. Biology and Fertility of Soils 54, 363–372.

    Article  CAS  Google Scholar 

  • Zhu, M., Zhang, L., Franks, A.E., Feng, X., Brookes, P.C., Xu, J., He, Y., 2019. Improved synergistic dechlorination of PCP in flooded soil microcosms with supplementary electron donors, as revealed by strengthened connections of functional microbial interactome. Soil Biology & Biochemistry 136, 107515.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (41721001, 41771269), China Agriculture Research System (CARS-04), and the National Key Research and Development Program of China (2016YF-D0800207).

Author information

Authors and Affiliations

  1. Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China

    Jiayin Feng, Zhijiang Lu, Jianming Xu & Yan He

  2. Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China

    Jiayin Feng, Zhijiang Lu, Jianming Xu & Yan He

  3. Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia

    Ashley E. Franks

  4. Centre for Future Landscapes, La Trobe University, Bundoora, Victoria, 3086, Australia

    Ashley E. Franks

Authors
  1. Jiayin Feng
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Ashley E. Franks
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Zhijiang Lu
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Jianming Xu
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Yan He
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Yan He.

Additional information

Highlights

• Rice microbiota responded to lindane pollutant was studied spatiotemporally.

• Growth time, soil types and rhizo-compartments had significant influence.

• Lindane stimulated the endosphere micro-biota of rice which was highly dynamic.

• Root-soil-microbe interactions induced an inhibited redox-coupled lindane removal.

• This work was beneficial to better regulation of plant growth against adversity.

Eletronic Supplementary Material

42832_2020_63_MOESM1_ESM.pdf

Assembly and variation of root-associated microbiota of rice during their vegetative growth phase with and without lindane pollutant

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Franks, A.E., Lu, Z. et al. Assembly and variation of root-associated microbiota of rice during their vegetative growth phase with and without lindane pollutant. Soil Ecol. Lett. 3, 207–219 (2021). https://doi.org/10.1007/s42832-020-0063-1

Download citation

  • Received: 29 May 2020

  • Revised: 24 August 2020

  • Accepted: 09 September 2020

  • Published: 02 November 2020

  • Issue Date: September 2021

  • DOI: https://doi.org/10.1007/s42832-020-0063-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Lindane pollutant
  • Rice (Oryza sativa L.)
  • Root-associated microbiota
  • Root-microbe-soil interaction
  • Vegetative growth phase
  • Metagenome functions
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Associated Content

Part of a collection:

Soil Pollution, Control, and Remediation

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.238.250.73

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.