Skip to main content

An ignored key link in greenhouse effect: Soil and soil CO2 slow heat loss

Abstract

The ever-increasing atmospheric CO2 concentration is a key driver of modern global warming. However, the low heat capacity of atmosphere and strong convection processes in the troposphere both limit heat retention. Given the higher heat capacity and CO2 concentration in soil compared to the atmosphere, the direct contributions of soil to the greenhouse effect may be significant. By experimentally manipulating CO2 concentrations both in the soil and the atmosphere, we demonstrated that the soil-retained heat and the slower soil heat transmission decrease the amount of heat energy leaking from the earth. Furthermore, the soil air temperature was affected by soil CO2 concentration, with the highest value recorded at 7500 ppm CO2. This study indicates that soil and soil CO2, together with atmospheric CO2, play a crucial role in the greenhouse effect. The spatial and temporal heterogeneity of soils and soil CO2 should be further investigated, given their potentially significant influence on global climate change.

References

  1. Alves, M., Soares, J., 2016. Diurnal variation of soil heat flux at an Antarctic local area during warmer months. Applied and Environmental Soil Science 2016, 1769203.

    Article  Google Scholar 

  2. Anderson, T.R., Hawkins, E., Jones, P.D., 2016. CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today’s earth system models. Endeavour 40, 178–187.

    Article  Google Scholar 

  3. Bouwman, A.F., 1989. The role of soils and land use in the greenhouse effect. Netherlands Journal of Agricultural Science 37, 13–19.

    Article  Google Scholar 

  4. Di, X.Y., 2009. Research of soil thermal properties and it’s effects on surface energy balance in Tibet Plateau, thesis, Lanzou University.

  5. Feldman, D.R., Collins, W.D., Gero, P.J., Torn, M.S., Mlawer, E.J., Shippert, T.R., 2015. Observational determination of surface radiative forcing by CO2 from 2000 to 2010. Nature 519, 339–343.

    Article  CAS  Google Scholar 

  6. García-Suárez, A.M., Butler, C.J., 2006. Soil temperatures at Armagh Observatory, Northern Ireland, from 1904 to 2002. International Journal of Climatology 26, 1075–1089.

    Article  Google Scholar 

  7. Gebbie, G., Huybers, P., 2019. The little ice age and 20th-century deep Pacific cooling. Science 363, 70–74.

    Article  CAS  Google Scholar 

  8. Hicks Pries, C.E., Castanha, C., Porras, R., Phillips, C., Torn, M.S., 2018. Response to Comment on “The whole-soil carbon flux in response to warming”. Science 359, eaao0457.

    Article  CAS  Google Scholar 

  9. Hirano, T., Kim, H., Tanaka, Y., 2003. Long-term half-hourly measurement of soil CO2 concentration and soil respiration in a temperate deciduous forest. Journal of Geophysical Research, D, Atmospheres 108, 4631.

    Article  CAS  Google Scholar 

  10. Hu, Q., Feng, S., 2003. A daily soil temperature dataset and soil temperature climatology of the contiguous United States. Journal of Applied Meteorology 42, 1139–1156.

    Article  Google Scholar 

  11. Hu, Q., Feng, S., 2005. How have soil temperatures been affected by the surface temperature and precipitation in the Eurasian continent? Geophysical Research Letters 32, L14711.

    Google Scholar 

  12. Hurtt, G.C., Frolking, S.E., Fearon, M.G., Moore, B., Houghton, R.A., 2006. The underpinnings of land-use history: three centuries of global gridded land-use transitions, wood-harvest activity, and resulting secondary lands. Global Change Biology 12, 1208–1229.

    Article  Google Scholar 

  13. Jenkinson, D.S., Adams, D.E., Wild, A., 1991. Model estimates of CO2 emissions from soil in response to global warming. Nature 351, 304–306.

    Article  CAS  Google Scholar 

  14. Lacis, A.A., Schmidt, G.A., Rind, D., Ruedy, R.A., 2010. Atmospheric CO2: principal control knob governing earth’s temperature. Science 330, 356–359.

    Article  CAS  Google Scholar 

  15. Lal, R., 2003. Global potential of soil carbon sequestration to mitigate the greenhouse effect. Critical Reviews in Plant Sciences 22, 151–184.

    Article  Google Scholar 

  16. Niu, G.Y., Sun, S.F., Hong, Z.X., 1997. Numerical simulation on water and heat transport in the desert soil and atmospheric boundary layer. Acta Meteorologica Sinica 55, 398–407 (In Chinese with English abstract).

    Google Scholar 

  17. Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., Erasmi, S., 2016. Greenhouse gas emissions from soils—A review. Geochemistry 76, 327–352.

    Article  CAS  Google Scholar 

  18. Sheng, H., Luo, S., Zhou, P., Li, T.Y., Wang, J., Li, J., 2012. Dynamic observation, simulation and application of soil CO2 concentration: a review. Chinese Journal of Applied Ecology 23, 2916–2922 (In Chinese with English abstract).

    CAS  Google Scholar 

  19. Shia, R., 2010. Mechanism of radiative forcing of greenhouse gas and its implication to the global warming. American Geophysical Union Agu Fall Meeting.

  20. Smith, K.A., Ball, T., Conen, F., Dobbie, K.E., Massheder, J., Rey, A., 2003. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. European Journal of Soil Science 54, 779–791.

    Article  Google Scholar 

  21. Tang, M.C., Sun, S.H., Zhong, Q., Wu, S.J., 1982. The energy variation of the underlying surface and the changes of the weather and climate. Plateau Meteorology 1, 24–34 (In Chinese with English abstract).

    Google Scholar 

  22. Wang, C., Huang, Q.B., Yang, Z.J., Huang, R., Chen, G.S., 2011. Analysis of vertical profiles of soil CO2 efflux in Chinese fir plantation. Acta Ecologica Sinica 31, 5711–5719 (In Chinese with English abstract).

    CAS  Google Scholar 

  23. Wang, X.L., Fu, S.L., Li, J.X., Zou, X.M., Zhang, W.X., Xia, H.P., Lin, Y. B., Tian, Q., Zhou, L.X., 2019. Forest soil profile inversion and mixing change the vertical stratification of soil CO2 concentration without altering soil surface CO2 Flux. Forests 10, 192.

    Article  Google Scholar 

  24. Zhang, H., Wang, E.L., Zhou, D.W., Luo, Z.K., Zhang, Z.X., 2016. Rising soil temperature in China and its potential ecological impact. Scientific Reports 6, 35530.

    Article  CAS  Google Scholar 

  25. Zhao, J.H., Zhang, Q., Wang, S., Liu, H.Y., 2013. Effect of soil heat slow transmission process on surface energy balance in semi-arid area. Chinese Journal of Soil Science 44, 1321–1331 (In Chinese with English abstract).

    Google Scholar 

  26. Zhou, G.Y., Xu, S., Ciais, P., Manzoni, S., Fang, J., Yu, G., Tang, X., Zhou, P., Wang, W., Yan, J., Wang, G., Ma, K., Li, S., Du, S., Han, S., Ma, Y., Zhang, D., Liu, J., Liu, S., Chu, G., Zhang, Q., Li, Y., Huang, W., Ren, H., Lu, X., Chen, X., 2019. Climate and litter C/N ratio constrain soil organic carbon accumulation. National Science Review 6, 746–757.

    Article  CAS  Google Scholar 

  27. Zhu, F., Cuo, L., Zhang, Y., Luo, J.J., Lettenmaier, D.P., Lin, Y., Liu, Z., 2018. Spatiotemporal variations of annual shallow soil temperature on the Tibetan Plateau during 1983–2013. Climate Dynamics 51, 2209–2227.

    Article  Google Scholar 

Download references

Acknowledgments

We thank G. Li, J.J. Yu, C C. Zhao and X.X. Chen for help in field experiment, and Drs. Xiaoming Zou, Ming Xu, Youming Chen for helpful discussion in manuscript preparation. This work was supported by the National Natural Science Foundation of China (41877054, 31570516), the Zhongyuan Scholar Program (182101510005) and the CAS/SAFEA International Partnership Program for Creative Research Teams.

Author information

Affiliations

Authors

Contributions

W. Zhang, C. Yu, and S. Fu initiated the collaborative study and designed the experiment; C. Yu, W. Zhang, Z. Shen, S. Liu and S. L. Li conducted the laboratory and field work; W. Zhang and C. Yu performed data analysis; W. Zhang, C. Yu, Y. Shao and S. Fu dischangussed the data and prepared the manuscript.

Corresponding author

Correspondence to Shenglei Fu.

Supplementary Materials for

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Yu, C., Shen, Z. et al. An ignored key link in greenhouse effect: Soil and soil CO2 slow heat loss. Soil Ecol. Lett. 2, 308–316 (2020). https://doi.org/10.1007/s42832-020-0047-1

Download citation

Keywords

  • Soil CO2 concentration
  • Soil temperature
  • Atmosphere temperature
  • Soil heat loop
  • Earth heat balance