A rice variety with a high straw biomass retained nitrogen and phosphorus without affecting soil bacterial species

Abstract

It is well documented that rice paddy fields act as agricultural wetlands that remove or retain nutrients; however, their associated effects on soil microbial communities are rarely reported. The present study evaluates the impact of rice variety on nutrient removal via plant uptake, nutrient retention in the soil, and bacterial associations in rice paddy fields, using a network analysis that compares the soil bacterial communities of two rice varieties. We found that the high-straw rice variety (YD-1) allows uptake of a high amount of nitrogen (N) and phosphorus (P) from paddy rice fields via harvesting, but causes less residual total N and P to remain in the soil. However, both rice varieties (YD-1 and XS-134 (Xiushui-134)) had non-significant effects on the dominant bacterial taxa. The short-term response of bacterial community diversity to rice variety is found to be mainly due to less frequently recovered species. A network analysis that incorporates soil nutrients as nodes, along with bacterial taxa, found that only one node representing the total P related to the non-dominant species had an indirect association with the rice straw biomass. The observed short-term impact of the two rice varieties (XS-134 and YD-1) on soil bacterial diversity and nutrient surplus in these agricultural wetlands is limited under a high level of fertilization.

References

  1. Amato, K.R., Yeoman, C.J., Kent, A., Righini, N., Carbonero, R., Estrada, A., Gaskins, H.R., Stumpf, R.M., Yildirim, S., Torralba, M., Gillis, M., Wilson, B.A., Nelson, K.E., White, B.A., Leigh, S.R., 2013. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME Journal 7, 1344–1353.

    CAS  Google Scholar 

  2. Balasooriya, W.K., Huygens, D., Rajapaksha, R.M.C.P., Boeckx, P., 2016. Effect of rice variety and fertilizer type on the active microbial community structure in tropical paddy fields in Sri Lanka. Geoderma 265, 87–95.

    CAS  Google Scholar 

  3. Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate-a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B. Methodological 57, 289–300.

    Google Scholar 

  4. Bhadraray, S., Purakayastha, T.J., Chhonkar, P.K., Verma, V., 2002. Phosphorus mobilization in hybrid rice rhizosphere compared to high yielding varieties under integrated nutrient management. Biology and Fertility of Soils 35, 73–78.

    CAS  Google Scholar 

  5. Breidenbach, B., Pump, J., Dumont, M.G., 2016. Microbial community structure in the rhizosphere of rice plants. Frontiers in Microbiology 6, 1537

    Google Scholar 

  6. Breulmann, M., Schulz, E., Weilihuhn, K., Buscot, F., 2012. Impact of the plant community composition on labile soil organic carbon, soil microbial activity and community structure in semi-natural grassland ecosystems of different productivity. Plant and Soil 352, 253–265.

    CAS  Google Scholar 

  7. Brown, M.B., 1975. 400: A method for combining non-independent, one-sided tests of significance. Biometrics 31, 987.

    Google Scholar 

  8. Cade-Menun, B.J., Carter, M.R., James, D.C., Liu, C.W., 2010. Phosphorus forms and chemistry in the soil profile under long-term conservation tillage: a phosphorus-31 nuclear magnetic resonance study. Journal of Environmental Quality 39, 1647–1656.

    CAS  Google Scholar 

  9. Campiglia, E., Mancinelli, R., Di Felice, V., Radicetti, E., 2014. Long-term residual effects of the management of cover crop biomass on soil nitrogen and yield of endive (Cichorium endivia L.) and savoy cabbage (Brassica oleracea var. sabauda). Soil & Tillage Research 139, 1–7

    Google Scholar 

  10. Chowdhury, S. P., Babin, D., Sandmann, M., Jacquiod, S., Sommer-mann, L., Sorensen, S.J., Fliessbach, A., Mader, P., Geistlinger, J., Smalla, K., Rothballer, M., Grosch, R., 2019. Effect of long-term organic and mineral fertilization strategies on rhizosphere micro-biota assemblage and performance of lettuce. Environmental Microbiology 21, 2426–2439

    Google Scholar 

  11. Chen, H., Wang, G., Lu, X., Jiang, M., Mendelssohn, I.A., 2015. Balancing the needs of China’s wetland conservation and rice production. Environmental Science & Technology 49, 6385–6393.

    CAS  Google Scholar 

  12. Conrad, R., 2007. Microbial ecology of methanogens and methano-trophs. Advances in Agronomy 96, 1–63.

    CAS  Google Scholar 

  13. Dass, A., Kaur, R., Choudhary, A.K., Pooniya, V., Raj, R., Rana, K.S., 2015. System of rice (Oryza sativa) intensification for enhanced productivity and resource-use-efficiency-A review. Indian Journal of Agronomy 60, 1–19.

    CAS  Google Scholar 

  14. Dobermann, A., Fairhurst, T.H., 2000. Rice: Nutrient Disorders and Nutrient Management. Makati City: International Rice Research Institute, Philippines, pp.199

    Google Scholar 

  15. Eisenhauer, N., Bessler, H., Engels, C., Gleixner, G., Habekost, M., Milcu, A., Partsch, S., Sabais, A.C., Scherber, C., Steinbeiss, S., Weigelt, A., Weisser, W.W., Scheu, S., 2010. Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91, 485–496.

    CAS  Google Scholar 

  16. Faust, K., Raes, J., 2012. Microbial interactions: from networks to models. Nature Reviews Microbiology 10, 538–550.

    CAS  Google Scholar 

  17. Faust, K., Sathirapongsasuti, J.F., Izard, J., Segata, N., Gevers, D., Raes, J., Huttenhower, C., 2012. Microbial co-occurrence relationships in the human microbiome. PLoS Computational Biology 8, e1002606.

    CAS  Google Scholar 

  18. Freese, D., Vanderzee, S., Vanriemsdijk, W.H., 1992. Comparison of different models for phosphate sorption as a function of the iron an aluminum-oxides of soils. Journal of Soil Science 43, 729–738.

    CAS  Google Scholar 

  19. Han, S., Luo, X., Liao, H., Nie, H., Chen, W., Huang, Q., 2017. Nitrospira are more sensitive than Nitrobacterio land management in acid, fertilized soils of a rapeseed-rice rotation field trial. Science of the Total Environment 599–600, 135–144.

    Google Scholar 

  20. Harish, M.N., Choudhary, A.K., Singh, Y.V., Pooniya, V., Das, A., Varatharajan, T., 2018. Influence of promising rice (Oryza sativa) varieties and nutrient management practices on micronutrient biofortification and soil fertility in Eastern Himalayas. Indian Journal of Agronomy 63, 377–399.

    CAS  Google Scholar 

  21. Jennings, P.R., 1974. Rice breeding and world food production. Science 186, 1085–1088.

    CAS  Google Scholar 

  22. Ju, X.T., Xing, G.X., Chen, X.P, Zhang, S.L., Zhang, L.J., Liu, X.J., Cui, Z.L., Yin, B., Christie, P., Zhu, Z.L., Zhang, F.S., 2009. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences of the United States of America 106, 3041–3046.

    CAS  Google Scholar 

  23. Kulichevskaya, I.S., Suzina, N.E., Liesack, W., Dedysh, S.N., 2010. Bryobacter aggregatus gen. nov, sp. nov, a peat-inhabiting, aerobic chemo-organotroph from subdivision 3 of the Acidobac-teria. International Journal of Systematic and Evolutionary Microbiology 60, 301–306.

    Google Scholar 

  24. Lange, M., Eisenhauer, N., Sierra, C.A., Bessler, H., Engels, C., Griffiths, R.I., Mellado-Vazquez, P.G., Malik, A.A., Roy, J., Scheu, S., Steinbeiss, S., Thomson, B.C., Trumbore, S.E., Gleixner, G., 2015. Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications 6, 6707.

    CAS  Google Scholar 

  25. Liang, X.Q., Chen, Y.X., Li, H., Tian, G.M., Zhang, Z.J., Ni, W.Z., He, M.M., 2007. Nitrogen interception in floodwater of rice field inTaihu region of China. Journal of Environmental Sciences (China) 19, 1474–1481.

    CAS  Google Scholar 

  26. Liang, X.Q., Chen, Y.X., Nie, Z.Y, Ye, Y.S., Liu, J., Tian, G.M., Wang, G.H., Tuong, T.P., 2013. Mitigation of nutrient losses via surface runoff from rice cropping systems with alternate wetting and drying irrigation and site-specific nutrient management practices. Environmental Science and Pollution Research International 20, 6980–6991.

    CAS  Google Scholar 

  27. Liang, X.Q., Harter, T., Porta, L., van Kessel, C., Linquist, B.A., 2014. Nitrate leaching in californian rice fields: a field- and regional-scale assessment. Journal of Environmental Quality 43, 881–894.

    CAS  Google Scholar 

  28. Liang, X.Q., Jin, Y., He, M.M., Liu, Y., Hua, G.F., Wang, S., Tian, G.M., 2017. Composition of phosphorus species and phosphatase activities in a paddy soil treated with manure at varying rates. Agriculture, Ecosystems & Environment 237, 173–180.

    Google Scholar 

  29. Lima-Mendez, G., Faust, K., Henry, N., Decelle, J., Colin, S., Carcillo, F., Chaffron, S., Ignacio-Espinosa, J.C., Roux, S., Vincent, F., Bittner, L., Darzi, Y., Wang, J., Audic, S., Berline, L., Bontempi, G., Cabello, A.M., Coppola, L., Cornejo-Castillo, F.M., d’Ovidio, F., De Meester, L., Ferrera, I., Garet-Delmas, M.J., Guidi, L., Lara, E., Pesant, S., Royo-Llonch, M., Salazar, G., Sanchez, P., Sebastian, M., Souffreau, C., Dimier, C., Picheral, M., Searson, S., Kandels-Lewis, S., Gorsky, G., Not, R., Ogata, H., Speich, S., Stemmann, L., Weissenbach, J., Wincker, P., Acinas, S.G., Sunagawa, S., Bork, P., Sullivan, M.B., Karsenti, E., Bowler, C., de Vargas, C., Raes, J., the Tara Oceans coordinators, 2015. Ocean plankton. Determinants of community structure in the global plankton interactome. Science 348, 1262073.

    Google Scholar 

  30. Luo, X.S., Han, S., Fu, X.Q., Li, X., Wang, L., Peng, S.B., Chen, W.L., Huang, X.Y., 2019. The microbial network in naturally fertile paddy soil possibly facilitates functional recruitment in the rice mature stage. Applied Soil Ecology 135, 174–181.

    Google Scholar 

  31. Makarov, M.I., Haumaier, L., Zech, W., Marfenina, O.E., Lysak, L.V., 2005. Can 31P NMR spectroscopy be used to indicate the origins of soil organic phosphates? Soil Biology & Biochemistry 37, 15–25.

    CAS  Google Scholar 

  32. Olsen, S.R., Sommers, L.E., 1982. Phosphorus. In: Page, A.L., Miller, R.H., Keeney, D.R., eds. Methods of Soil Analysis. Part 2 Chemical and Microbiological Properties. Madison, WhASASSSA, pp. 403–430.

    Google Scholar 

  33. Palm, C., Blanco-Canqui, H., DeClerck, R., Gatere, L., Grace, P., 2014. Conservation agriculture and ecosystem services: An overview. Agriculture, Ecosystems & Environment 187, 87–105.

    Google Scholar 

  34. Pittelkow, C.M., Liang, X., Linquist, B.A., van Groenigen, K.J., Lee, J., Lundy, M.E., van Gestel, N., Six, J., Venterea, R.T., van Kessel, C., 2015. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368.

    CAS  Google Scholar 

  35. Poudel, R., Jumpponen, A., Schlatter, D.C., Paulitz, T.C., Gardener, B. B., Kinkel, L.L., Garrett, K.A., 2016. Microbiome networks: A systems framework for identifying candidate microbial assemblages for disease management. Phytopathology 106, 1083–1096.

    CAS  Google Scholar 

  36. Singh, K., Trivedi, P., Singh, G., Singh, B., Patra, D.D., 2016. Effect of different leaf litters on carbon, nitrogen and microbial activities of sodic soils. Land Degradation & Development 27, 1215–1226.

    Google Scholar 

  37. Somaweera, K.A.T.N., Suriyagoda, L.D.B., Sirisena, D.N., De Costa, W.A.J.M., 2016. Accumulation and partitioning of biomass, nitrogen, phosphorus and potassium among different tissues during the life cycle of rice grown under different water management regimes. Plant and Soil 401, 169–183.

    CAS  Google Scholar 

  38. Stewart, J.W.B., Tiessen, H., 1987. Dynamics of soil organic phosphorus. Biogeochemistry 4, 41–60.

    CAS  Google Scholar 

  39. Suriyagoda, L., De Costa, W.A.J.M., Lambers, H., 2014. Growth and phosphorus nutrition of rice when inorganic fertiliser application is partly replaced by straw under varying moisture availability in sandy and clay soils. Plant and Soil 384, 53–68.

    CAS  Google Scholar 

  40. Tejada, M., Benitez, C., 2014. Effects of crushed maize straw residues on soil biological properties and soil restoration. Land Degradation & Development 25, 501–509.

    Google Scholar 

  41. Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., Polasky, S., 2002. Agricultural sustainability and intensive production practices. Nature 418, 671–677.

    CAS  Google Scholar 

  42. Toor, G.S., Condron, L.M., Di, H.J., Cameron, K.C., Cade-Menun, B. J., 2003. Characterization of organic phosphorus in leachatefrom a grassland soil. Soil Biology & Biochemistry 35, 1317–1323.

    CAS  Google Scholar 

  43. Traina, S.J., Sposito, G., Hesterberg, D., Kafkafi, U., 1986. Effects of pH and organic acids on orthophosphate solubility in an acidic, montmorillonitic soil. Soil Science Society of America Journal 50, 45–52.

    CAS  Google Scholar 

  44. Walker, T.W., Adams, A.F.R., 1958. Studies on soil organic matter: 1. Influence of phosphorus contents of parent materials on accumulations of carbon, nitrogen, sulfur, and organic phosphorus in grassland soils. Soil Science 85, 307–318.

    CAS  Google Scholar 

  45. Wang, S.X., Liang, X.Q., Chen, Y.X., Luo, Q.X., Liang, W.S., Li, S., Huang, C.L., Li, Z.Z., Wan, L.L., Li, W., Shao, X.X., 2012. Phosphorus loss potential and phosphatase activity under phosphorus fertilization in long-term paddy wetland agroecosys-tems. Soil Science Society of America Journal 76, 161–167.

    CAS  Google Scholar 

  46. Xiong, Y., Peng, S., Luo, Y., Xu, J., Yang, S., 2015. A paddy eco-ditch and wetland system to reduce non-point source pollution from rice-based production system while maintaining water use efficiency. Environmental Science and Pollution Research International 22, 4406–4417.

    CAS  Google Scholar 

  47. Yao, L., Wang, D., Kang, L., Wang, D., Zhang, Y., Hou, X., Guo, Y., 2018. Effects of fertilizations on soil bacteria and fungi communities in a degraded arid steppe revealed by high through-put sequencing. Peer J 6, e4623.

    Google Scholar 

  48. Ye, Y., Liang, X., Chen, Y., Li, L., Ji, Y., Zhu, C., 2014. Carbon, nitrogen and phosphorus accumulation and partitioning, and C:N:P stoichiometry in late-season rice under different water and nitrogen managements. PLoS One 9, e101776.

    Google Scholar 

  49. Yin, Y., Wang, J., 2016. Changes in microbial community during biohydrogen production using gamma irradiated sludge as inoculum. Bioresource Technology 200, 217–222.

    CAS  Google Scholar 

  50. Yuan, G., Lavkulich, L.M., 1994. Phosphate sorption in relation to extractable iron and aluminum in spodosols. Soil Science Society of America Journal 58, 343–346.

    CAS  Google Scholar 

  51. Zhang, K.L., Chen, L., Li, Y., Brookes, P.C., Xu, J.M., Luo, Y., 2017. The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers. Biology and Rertility of Soils 53, 77–87.

    CAS  Google Scholar 

  52. Zhao, J., Ni, T., Li, J., Lu, Q., Rang, Z.Y., Huang, Q.W., Zhang, R.R., Li, R., Shen, B., Shen, Q.R., 2016. Effects of organic-inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice-wheat cropping system. Applied Soil Ecology 99, 1–12

    Google Scholar 

Download references

Acknowledgments

We are grateful for grants from the National Key Research and Development Program of China (2017YFD0800103), Natural Science Foundation of Zhejiang Province (LR16B070001), and the National Natural Science Foundation of China (41522108).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xinqiang Liang.

Ethics declarations

The authors report no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Li, F., Wang, S. et al. A rice variety with a high straw biomass retained nitrogen and phosphorus without affecting soil bacterial species. Soil Ecol. Lett. 2, 131–144 (2020). https://doi.org/10.1007/s42832-020-0029-3

Download citation

Keywords

  • Agricultural wetland
  • Network analysis
  • Nutrient
  • Rice variety
  • Soil bacterial communities