Skip to main content
Log in

Temperature effects on the properties of solid carbon from natural gas pyrolysis in molten tin

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Natural gas pyrolysis produces hydrogen and solid carbon at high temperatures in an oxygen-free environment. This study has evaluated the characteristics of solid carbon obtained from the pyrolysis of methane and natural gas by using molten tin (Sn) at 900–1000 °C. Material characterization outcomes revealed that solid carbon produced at 1000 °C has a spherical morphology. At this temperature, methane and natural gas pyrolysis have resulted in the arrangement of nanocrystalline carbon spheres with average sizes of 635 and 287 nm, respectively. Similarly, pyrolysis at 900 °C and 950 °C has yielded nanocrystalline carbon featuring diverse morphologies such as spheres, fibrous, and irregularly shaped particles. Thermogravimetric analysis revealed that solid carbon products obtained from methane and natural gas pyrolysis at 1000 °C have higher thermal stability compared to commercial carbon black N991. Surface area analysis has indicated that solid carbon from natural gas pyrolysis at 1000 °C has 4.3- and 5.3-times higher surface area compared to the commercial carbon black N991 sample and graphite flakes, respectively. These findings offered insights into optimizing pyrolysis reactor design and operation to generate valuable solid carbon by-products while maximizing hydrogen production.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The supporting data was provided in the "Supplemetary File".

Abbreviations

BET:

Brunauer–Emmett–Teller

CB:

Carbon black

DI:

Deionized water

EDX:

Energy-dispersive X-ray spectroscopy

HAADF:

High-Angle Annular Dark-Field

OD:

Outer diameter

Mt:

Million tonnes

MP:

Methane pyrolysis

NGP:

Natural gas pyrolysis

SC:

Solid carbon

SCCM:

Standard cubic centimetres per minute

SEM:

Scanning electron microscopy

STEM:

Scanning transmission electron microscopy

TEM:

Transmission electron microscopy

TGA:

Thermogravimetric analysis

XRD:

X-ray diffraction spectroscopy

References

  1. Chen C-J, Back MH (1979) The simultaneous measurement of the rate of formation of carbon and of hydrocarbon products in the pyrolysis of methane. Carbon 17(2):175–180. https://doi.org/10.1016/0008-6223(79)90026-5

    Article  CAS  Google Scholar 

  2. Rahimi N et al (2019) Solid carbon production and recovery from high temperature methane pyrolysis in bubble columns containing molten metals and molten salts. Carbon 151:181–191. https://doi.org/10.1016/j.carbon.2019.05.041

    Article  CAS  Google Scholar 

  3. Lin T-H, Chien Y-S, Chiu W-M (2017) Rubber tire life cycle assessment and the effect of reducing carbon footprint by replacing carbon black with graphene. Int J Green Energy 14(1):97–104. https://doi.org/10.1080/15435075.2016.1253575

    Article  CAS  Google Scholar 

  4. Jia L-C, Li Y-K, Yan D-X (2017) Flexible and efficient electromagnetic interference shielding materials from ground tire rubber. Carbon 121:267–273. https://doi.org/10.1016/j.carbon.2017.05.100

    Article  CAS  Google Scholar 

  5. Moyano JJ, Gómez-Gómez A, Pérez-Coll D, Belmonte M, Miranzo P, Osendi MI (2019) Filament printing of graphene-based inks into self-supported 3D architectures. Carbon 151:94–102. https://doi.org/10.1016/j.carbon.2019.05.059

    Article  CAS  Google Scholar 

  6. Hrytsenko O, Hrytsenko D, Shvalagin V, Grodziuk G, Kompanets M (2018) The use of carbon nanoparticles for inkjet-printed functional labels for smart packaging. J Nanomater 2018:6485654. https://doi.org/10.1155/2018/6485654

    Article  CAS  Google Scholar 

  7. Lopes MMS et al (2021) Optimization of performance of sustainable paints using granite waste through the variation of particle size and pH. J Clean Prod 326:129418. https://doi.org/10.1016/j.jclepro.2021.129418

    Article  CAS  Google Scholar 

  8. Zhang J, Chevali VS, Wang H, Wang C-H (2020) Current status of carbon fibre and carbon fibre composites recycling. Compos Part B Eng 193:108053. https://doi.org/10.1016/j.compositesb.2020.108053

    Article  CAS  Google Scholar 

  9. Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264. https://doi.org/10.1016/j.mattod.2014.10.040

    Article  CAS  Google Scholar 

  10. Zhang J, Chen Y, Zheng H, Gao L (2015) Introduction to the special issue on carbon materials for energy storage and conversion. Carbon 92:382. https://doi.org/10.1016/j.carbon.2015.06.021

    Article  CAS  Google Scholar 

  11. Stantec Consulting (2020) COSIA—technical and market assessment of solid carbon products. Stantec

    Google Scholar 

  12. Gilpin Robinson Jr. DWO, Hammarstrom JM (2017) Graphite, Professional Paper 1802–J. US Geological Survey

  13. Zhang D, Tan C, Zhang W, Pan W, Wang Q, Li L (2022) Expanded graphite-based materials for supercapacitors: a review. Molecules. https://doi.org/10.3390/molecules27030716

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang H, Yang Y, Ren D, Wang L, He X (2021) Graphite as anode materials: fundamental mechanism, recent progress and advances. Energy Storage Mater 36:147–170. https://doi.org/10.1016/j.ensm.2020.12.027

    Article  Google Scholar 

  15. Yu Y et al (2022) Three-dimensional highway-like graphite flakes/carbon fiber hybrid electrode for electrochemical biosensor. Mater Today Adv 14:100238. https://doi.org/10.1016/j.mtadv.2022.100238

    Article  CAS  Google Scholar 

  16. Lesiak B et al (2021) Chemical and structural properties of reduced graphene oxide—dependence on the reducing agent. J Mater Sci 56(5):3738–3754. https://doi.org/10.1007/s10853-020-05461-1

    Article  CAS  Google Scholar 

  17. IEA (2021) Hydrogen. IEA, Paris. https://www.iea.org/reports/hydrogen

  18. Jubb C, Nakhutin A, Cianci VCS (2006) CHEMICAL INDUSTRY EMISSIONS. In: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, vol. 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, pp. 1–110. https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/3_Volume3/V3_3_Ch3_Chemical_Industry.pdf

  19. Haaland DM (1976) Graphite–liquid–vapor triple point pressure and the density of liquid carbon. Carbon 14(6):357–361. https://doi.org/10.1016/0008-6223(76)90010-5

    Article  CAS  Google Scholar 

  20. Leal-Pérez BJ, Medrano-Jiménez JA, Bhardwaj R, Goetheer E, van Sint-Annaland M, Gallucci F (2021) Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: proof of concept & techno-economic assessment. Int J Hydrog Energy 46(7):4917–4935. https://doi.org/10.1016/j.ijhydene.2020.11.079

    Article  CAS  Google Scholar 

  21. Plevan M et al (2015) Thermal cracking of methane in a liquid metal bubble column reactor: experiments and kinetic analysis. Int J Hydrog Energy 40(25):8020–8033. https://doi.org/10.1016/j.ijhydene.2015.04.062

    Article  CAS  Google Scholar 

  22. Patlolla SR, Katsu K, Sharafian A, Wei K, Herrera OE, Mérida W (2023) A review of methane pyrolysis technologies for hydrogen production. Renew Sustain Energy Rev 181:113323. https://doi.org/10.1016/j.rser.2023.113323

    Article  CAS  Google Scholar 

  23. Serban M, Lewis MA, Marshall CL, Doctor RD (2003) Hydrogen production by direct contact pyrolysis of natural gas. Energy Fuels 17(3):705–713. https://doi.org/10.1021/ef020271q

    Article  CAS  Google Scholar 

  24. Wang K, Li WS, Zhou XP (2008) Hydrogen generation by direct decomposition of hydrocarbons over molten magnesium. J Mol Catal Chem 283(1):153–157. https://doi.org/10.1016/j.molcata.2007.12.018

    Article  CAS  Google Scholar 

  25. Geißler T et al (2015) Experimental investigation and thermo-chemical modeling of methane pyrolysis in a liquid metal bubble column reactor with a packed bed. Int J Hydrogen Energy 40(41):14134–14146. https://doi.org/10.1016/j.ijhydene.2015.08.102

    Article  CAS  Google Scholar 

  26. Geißler T et al (2016) Hydrogen production via methane pyrolysis in a liquid metal bubble column reactor with a packed bed. Chem Eng J 299:192–200. https://doi.org/10.1016/j.cej.2016.04.066

    Article  CAS  Google Scholar 

  27. Upham DC et al (2017) Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science 358(6365):917–921. https://doi.org/10.1126/science.aao5023

    Article  CAS  PubMed  Google Scholar 

  28. Munera-Parra AA, Agar DW (2017) Molten metal capillary reactor for the high-temperature pyrolysis of methane. Int J Hydrogen Energy 42(19):13641–13648. https://doi.org/10.1016/j.ijhydene.2016.12.044

    Article  CAS  Google Scholar 

  29. Heinzel A et al (2017) Liquid metals as efficient high-temperature heat-transport fluids. Energy Technol 5(7):1026–1036. https://doi.org/10.1002/ente.201600721

    Article  Google Scholar 

  30. Zeng J, Tarazkar M, Pennebaker T, Gordon MJ, Metiu H, McFarland EW (2020) Catalytic methane pyrolysis with liquid and vapor phase tellurium. ACS Catal 10(15):8223–8230. https://doi.org/10.1021/acscatal.0c00805

    Article  CAS  Google Scholar 

  31. Palmer C, Bunyan E, Gelinas J, Gordon MJ, Metiu H, McFarland EW (2020) CO2-Free hydrogen production by catalytic pyrolysis of hydrocarbon feedstocks in molten Ni–Bi. Energy Fuels 34(12):16073–16080. https://doi.org/10.1021/acs.energyfuels.0c03080

    Article  CAS  Google Scholar 

  32. Zaghloul N, Kodama S, Sekiguchi H (2021) Hydrogen production by methane pyrolysis in a molten-metal bubble column. Chem Eng Technol 44(11):1986–1993. https://doi.org/10.1002/ceat.202100210

    Article  CAS  Google Scholar 

  33. Kudinov IV, Pimenov AA, Kryukov YA, Mikheeva GV (2021) A theoretical and experimental study on hydrodynamics, heat exchange and diffusion during methane pyrolysis in a layer of molten tin. Int J Hydrog Energy 46(17):10183–10190. https://doi.org/10.1016/j.ijhydene.2020.12.138

    Article  CAS  Google Scholar 

  34. Kim J, Oh C, Oh H, Lee Y, Seo H, Kim YK (2023) Catalytic methane pyrolysis for simultaneous production of hydrogen and graphitic carbon using a ceramic sparger in a molten NiSn alloy. Carbon. https://doi.org/10.1016/j.carbon.2023.02.053

    Article  Google Scholar 

  35. Scheiblehner D, Antrekowitsch H, Neuschitzer D, Wibner S, Sprung A (2023) Hydrogen production by methane pyrolysis in molten Cu–Ni–Sn alloys. Metals. https://doi.org/10.3390/met13071310

    Article  Google Scholar 

  36. Chen L et al (2023) Ternary NiMo-Bi liquid alloy catalyst for efficient hydrogen production from methane pyrolysis. Science 381(6660):857–861. https://doi.org/10.1126/science.adh8872

    Article  CAS  PubMed  Google Scholar 

  37. Neuschitzer D, Scheiblehner D, Antrekowitsch H, Wibner S, Sprung A (2023) Methane pyrolysis in a liquid metal bubble column reactor for CO2-free production of hydrogen. Energies. https://doi.org/10.3390/en16207058

    Article  Google Scholar 

  38. Sánchez-Bastardo N, Schlögl R, Ruland H (2020) Methane pyrolysis for CO2-free H2 production: a green process to overcome renewable energies unsteadiness. Chem Ing Tech 92(10):1596–1609. https://doi.org/10.1002/cite.202000029

    Article  CAS  Google Scholar 

  39. Siriwardane R, Riley J, Atallah C, Bobek M (2023) Investigation of methane and ethane pyrolysis with highly active and durable iron-alumina catalyst to produce hydrogen and valuable nano carbons: continuous fluidized bed tests and reaction rate analysis. Int J Hydrogen Energy 48(38):14210–14225. https://doi.org/10.1016/j.ijhydene.2022.12.268

    Article  CAS  Google Scholar 

  40. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095–14107. https://doi.org/10.1103/PhysRevB.61.14095

    Article  CAS  Google Scholar 

  41. Martins-Ferreira EH et al (2010) Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys Rev B 82(12):125429. https://doi.org/10.1103/PhysRevB.82.125429

    Article  CAS  Google Scholar 

  42. Jorio A, Ferreira EHM, Moutinho MVO, Stavale F, Achete CA, Capaz RB (2010) Measuring disorder in graphene with the G and D bands. Phys Status Solidi B 247(11–12):2980–2982. https://doi.org/10.1002/pssb.201000247

    Article  CAS  Google Scholar 

  43. Bhatt SV, Deshpande MP, Sathe V, Chaki SH (2015) Effect of pressure and temperature on Raman scattering and an anharmonicity study of tin dichalcogenide single crystals. Solid State Commun 201:54–58. https://doi.org/10.1016/j.ssc.2014.10.009

    Article  CAS  Google Scholar 

  44. Zhang H et al (2016) High temperature Raman investigation of few-layer MoTe2. Appl Phys Lett 108(9). https://doi.org/10.1063/1.4943139

  45. Wang G, Yu M, Feng X (2021) Carbon materials for ion-intercalation involved rechargeable battery technologies. Chem Soc Rev 50(4):2388–2443. https://doi.org/10.1039/D0CS00187B

    Article  CAS  PubMed  Google Scholar 

  46. Zhou Y et al (2023) Metastable hybridized structure transformation in amorphous carbon films during friction—a study combining experiments and MD simulation. Friction 11(9):1708–1723. https://doi.org/10.1007/s40544-022-0690-x

    Article  CAS  Google Scholar 

  47. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1–2):47–57. https://doi.org/10.1016/j.ssc.2007.03.052

    Article  CAS  Google Scholar 

  48. Çakmak G, Öztürk T (2019) Continuous synthesis of graphite with tunable interlayer distance. Diam Relat Mater 96:134–139. https://doi.org/10.1016/j.diamond.2019.05.002

    Article  CAS  Google Scholar 

  49. Koppel M et al (2021) In situ observation of pressure modulated reversible structural changes in the graphitic domains of carbide-derived carbons. Carbon 174:190–200. https://doi.org/10.1016/j.carbon.2020.12.025

    Article  CAS  Google Scholar 

  50. Bucknum MJ, Castro EA (2006) The carbon allotrope hexagonite and its potential synthesis from cold compression of carbon nanotubes. J Chem Theory Comput 2(3):775–781. https://doi.org/10.1021/ct060003n

    Article  CAS  PubMed  Google Scholar 

  51. Veres M, Tóth S, Koós M (2008) New aspects of Raman scattering in carbon-based amorphous materials. In: Proc. Diam. 2007 18th Eur. Conf. Diam. Diam.- Mater. Carbon Nanotub. Nitrides Silicon Carbide, vol. 17, no. 7, pp. 1692–1696, https://doi.org/10.1016/j.diamond.2008.01.110

  52. Kiciński W, Dyjak S (2020) Transition metal impurities in carbon-based materials: pitfalls, artifacts and deleterious effects. Carbon 168:748–845. https://doi.org/10.1016/j.carbon.2020.06.004

    Article  CAS  Google Scholar 

  53. Pimenta MA, Dresselhaus G, Dresselhaus MS, Cançado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9(11):1276–1290. https://doi.org/10.1039/B613962K

    Article  CAS  PubMed  Google Scholar 

  54. Scipioni R et al (2014) Preparation and characterization of nanocomposite polymer membranes containing functionalized SnO2 additives. Membranes 4(1):123–142. https://doi.org/10.3390/membranes4010123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Qiu C, Jiang L, Gao Y, Sheng L (2023) Effects of oxygen-containing functional groups on carbon materials in supercapacitors: a review. Mater Des 230:111952. https://doi.org/10.1016/j.matdes.2023.111952

    Article  CAS  Google Scholar 

  56. Qi X, Song W, Shi J (2017) Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials. PLoS ONE 12(3):e0173864. https://doi.org/10.1371/journal.pone.0173864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang G, Wen M, Wang S, Chen J, Wang J (2018) Insights into thermal reduction of the oxidized graphite from the electro-oxidation processing of nuclear graphite matrix. RSC Adv 8(1):567–579. https://doi.org/10.1039/C7RA11578D

    Article  CAS  Google Scholar 

  58. Zhang X et al (2022) Enhancing the activity of Zn, Fe, and Ni-embedded microporous biocarbon: towards efficiently catalytic fast co-pyrolysis/gasification of lignocellulosic and plastic wastes. Energy Convers Manag X 13:100176. https://doi.org/10.1016/j.ecmx.2021.100176

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of Alberta Innovates, the Ministry of Jobs, Economy, and Innovation, and the Government of Alberta. The authors thank ATCO Gas and Pipelines Ltd. in Alberta for providing the pipeline natural gas for testing and characterization. The authors acknowledge Dr. Paolo Marcazzan from the Clean Energy Research Centre at the University of British Columbia for his input in the preparation of the manuscript. Also, the authors thank Mr. James A. Nott from the Pacific Centre for Isotopic and Geochemical Research (PCIGR), Dept. of Earth, Ocean & Atmospheric Sciences at the University of British Columbia for conducting the Raman analysis and Miss. Kanageswari Singara Veloo from the Biomass and Bioenergy research group, the Clean Energy Research Center (CERC) at the University of British Columbia for conducting thermogravimetric analysis. The TEM and XRD analyses work made use of the 4D LABS core facility at Simon Fraser University (SFU) supported by the Canada Foundation for Innovation (CFI), British Columbia Knowledge Development Fund (BCKDF), and Pacific Economic Development Canada (PacifiCan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Mérida.

Ethics declarations

Conflict of interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10367 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patlolla, S.R., Sharafian, A., Katsu, K. et al. Temperature effects on the properties of solid carbon from natural gas pyrolysis in molten tin. Carbon Lett. (2024). https://doi.org/10.1007/s42823-024-00716-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42823-024-00716-2

Keywords

Navigation